2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 14:31 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
А если совсем по рабоче-крестьянски пояснить написанное realeugene, то получится, что для цепочки из $N$ шариков в первый момент времени верхний шарик имеет ускорение $Ng,$ а нижний - ноль. И пока нижняя пружинка не сожмется, это ускорение останется нулем.

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 14:39 
Аватара пользователя


31/08/17
2116
Пока модель не зафиксирована и формулы не написаны, любым объяснениям цена -- ноль.

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 15:00 


05/09/16
12114
amon
Ну то есть, все-таки: соотношение жесткости пружины на растяжение, масса пружины, "скорость звука" (скорость распространения деформации пружины вдоль пружины) не играют никакой роли, поведение будет одно и то же, так ведь? Для демонстрируемого в первом посте темы эффекта важно только одно: чтобы когда пружина (пружинка в случае грузиков и пружинок между ними) сжалась, она уже не разжималась, и тогда никаких колебаний нет: есть только фаза сжатия и затем (когда верхний конец спустился к нижнему) падение сжатой пружины как единого целого.

amon в сообщении #1300022 писал(а):
в первый момент времени верхний шарик имеет ускорение $Ng,$ а нижний - ноль.

Тут есть еще такой момент. Когда верхний (первый) шарик соединится со вторым (первая пружинка полностью сожмется), дальше они двигаются как-бы слипшись, т.е. с одним и тем же ускорением. Если это ускорение по-прежнему больше чем $g$ (а судя по видео из первого поста, так оно и есть) то на верхний шарик должна действовать сила бОльшая чем $mg$, а на него действовать могут две силы: тяжести $mg$ и со стороны пружинки между первым и вторым шариком. Но тогда пружинка между первым и вторым шариком должна растягиваться, а этого не наблюдается в ролике. Вероятно, это можно объяснить тем, что когда "пружина из ролика" оставлена в покое и сжата, сила действия витков друг на друга ненулевая (то есть оставленная в покое и сжавшаяся пружина на самом деле остается напряжена, не знаю как правильно сказать). Тогда в аналогию с пружинками и грузиками надо вносить дополнения, иначе работать не будет.

-- 27.03.2018, 15:05 --

pogulyat_vyshel в сообщении #1300023 писал(а):
Пока модель не зафиксирована и формулы не написаны, любым объяснениям цена -- ноль.

У вас слишком скупые пояснения. Может они и правильные из-за того что у вас все размерные коэффициенты равны единице, но по вашим формулам
pogulyat_vyshel в сообщении #1300021 писал(а):
Направим ось $x$ вертикально вверх, и пусть $x_i$ -- координата и $i$-ой материальной точки. Тогда
$$\ddot x_k=-1+x_{k+1}+x_{k-1}-2x_k,\quad k=2,\ldots,N-1;$$
выходит что вторая производная координаты (по времени хоть?) какой-то точки равна какой-то сумме координат других точек. Слева ускорение, справа длина.

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 15:32 
Аватара пользователя


31/08/17
2116
realeugene в сообщении #1282371 писал(а):
Смещение витков такой пружины от состояния равновесия в растянутом состоянии описывается волновым уравнением.


напишите это волновое уравнение, поставьте начально-краевые услвоия и т. д.

-- 27.03.2018, 16:35 --

realeugene в сообщении #1282371 писал(а):
Верхние витки при этом схлопываются и далее не распрямляются, при этом, при схлопывании должна диссипировать энергия. То есть, лагнранжианом такую систему не описать.

и одновременно с этим:
realeugene в сообщении #1282371 писал(а):
Смещение витков такой пружины от состояния равновесия в растянутом состоянии описывается волновым уравнением.

с интересом посмотрю, как вы будите эти схлопования описывать волновым уравнением

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 18:28 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
pogulyat_vyshel в сообщении #1300023 писал(а):
Пока модель не зафиксирована и формулы не написаны, любым объяснениям цена -- ноль.
А я всего лишь пояснил что такое у Вас написано, не более. Там еще одно пояснение видимо нужно. В записи уважаемого pogulyat_vyshel единица времени это $\frac{1}{\omega},$ а единица длины -- $\frac{g}{\omega^2},$ где $\omega^2=\frac{k}{m}.$ Поэтому последнее выражение
pogulyat_vyshel в сообщении #1300021 писал(а):
$x_N(t)= x_N(0)+O( t^{N+3})$ при малых $t>0$
читается как: "Если собственный период колебаний велик по сравнению с временем падения, то последний шарик ни хрена не сдвинется".

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 19:37 


05/09/16
12114
amon в сообщении #1300057 писал(а):
читается как: "Если собственный период колебаний велик по сравнению с временем падения, то последний шарик ни хрена не сдвинется".
Явно не хватает окончания "... не сдвинется, пока...". Пока что?

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 19:45 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
wrest в сообщении #1300066 писал(а):
... не сдвинется, пока
На него не свалятся верхние шарики.

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 20:02 


05/09/16
12114
amon
Тогда позвольте еще один глупый вопрос. Что такое "время падения"? Это же не $\sqrt{2l/g}$ где $l$ длина цепочки в начальный момент? Или это именно оно?

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 20:47 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
wrest в сообщении #1300075 писал(а):
Что такое "время падения"? Это же не $\sqrt{2l/g}$ где $l$ длина цепочки в начальный момент? Или это именно оно?
Тут ведь качественные оценки, в том числе у pogulyat_vyshel. Только у него некий марафет (нужный) наведен. Поэтому что $\sqrt{2l/g},$ что $\sqrt{l/(2g)}$ большой роли не играет. Детали определяются "процессом соударения", но общий вывод что нижний конец долгое время неподвижен если пружина мягкая верен в любом случае.

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 21:00 


05/09/16
12114
amon в сообщении #1300085 писал(а):
Детали определяются "процессом соударения", но общий вывод что нижний конец долгое время неподвижен если пружина мягкая верен в любом случае.

Или если длинная.

Хорошо, вот у меня есть пружина, типа той какая на гифке в стартовом посте. Насколько она "мягкая"? Я могу померить
-- ее вес (массу).
-- длину в "сложенном" состоянии.
-- длину в вытянутом под собственным весом состоянии.

Я даже думаю что масса тут лишняя. Может пружина из урана, а может из полистирола, но если она под собственным весом вытягивается так же, то и падать будет одинаково (сопротивление воздуха не учитываем)?
Тогда "мягкость" -- это отношение длины в сложенном состоянии к длине в вытянутом, наверное...

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 21:09 
Аватара пользователя


31/08/17
2116
amon в сообщении #1300057 писал(а):
единица времени это $\frac{1}{\omega},$

единица времени $\sqrt{m/K}$
amon в сообщении #1300057 писал(а):
а единица длины -- $\frac{g}{\omega^2},$

единица длины $gm/K$

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 21:14 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
pogulyat_vyshel в сообщении #1300093 писал(а):
единица времени $\sqrt{m/K}$
amon в сообщении #1300057 писал(а):
где $\omega^2=\frac{k}{m}.$
;)

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 21:16 
Аватара пользователя


31/08/17
2116
да, что-то я не посмотрел

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 21:23 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
wrest в сообщении #1300090 писал(а):
Тогда "мягкость" -- это отношение длины в сложенном состоянии к длине в вытянутом, наверное...
А тут попробуйте сами догадаться. Можно в уравнениях pogulyat_vyshel сделать предельный переход, а можно из "общих соображений" по аналогии между шариками и пружинками и "струной".

 Профиль  
                  
 
 Re: Падающая пружина, если кому интересно...
Сообщение27.03.2018, 22:08 


05/09/16
12114
amon
А зачем там пределы? При трех шариках будет по-другому, чем при 300-х?

Насчет струны не понял.

Если я правильно понимаю, то при изменении жесткости наступит такой момент когда низ цепрчки начнет двигаться раньше, чем на него упадет верх, верно? Из написанного pogulyat_vyshel оценку этого можно сделать?

Просто из каббалы ув.pogulyat_vyshel простым рабоче-крестьянским смертным типа меня ничего не ясно без пояснений.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 86 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Taus


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group