В местной среде (не на форуме, а у себя, в регионе) я все чаще и чаще слышу словосочетание "неклассические дифференциальные уравнения". Видимо, этой темой тут занимаются многие. И кажется, я даже знаю, почему. Это движение, как я слышал, идет еще от одного академика советских лет: он основал здесь свою научную школу, потом постепенно появились его последователи, и все это продолжает развиваться и по сей день.
И почему я тут пишу. У меня складывается впечатление, что это сугубо... локальное явление. Я ни разу не слышал о том, чтобы люди, развивающие это направление, выходили на широкий контакт с международной научной общественностью. При общении с ними я еще не слышал того, чтобы они обсуждали результаты иностранных друзей или коллег, представителей других научных школ. С точки зрения внешнего наблюдателя они как будто варятся в собственном соку.
Мое впечатление поддерживают также яркие примеры видов математической деятельности, которые признаны "маргинальными". Большие кардиналы

тут все понятно. Печально известная финслерова геометрия. Тригонометрические ряды

отголосок былой советской математики.
Собственно вопрос темы сформулирован в заголовке: не являются ли неклассические дифуры такой же маргинальной темой?
P. S. Либо мои представления о "математических маргиналах" правдивы, либо мне стоит серьезно подкорректировать а) представление о научном (в частности, математическом) мире или б) представление о неклассических ДУ, заодно в) представление о финслеровой геометрии :)