2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Олимпиада НГУ - 2017
Сообщение23.10.2017, 08:58 


26/08/11
2146
bot в сообщении #1258023 писал(а):
3. Пусть $a,b,c$ натуральны, $a-c,b-c$ взаимно просты и $\frac1a+\frac1b=\frac1c.$
Докажите, что числа $a+b, a-c, b-c$ являются квадратами натуральных чисел.
$c=\dfrac{ab}{a+b}$

Если $\gcd(a,b)=1$, то решений нет. Пусть $a=ku,b=kv,\gcd(u,v)=1$

$c=\dfrac{kuv}{u+v}\Rightarrow (u+v)\mid k$

$
\\k=(u+v)t\\
a=u(u+v)t\\
b=v(u+v)t\\
c=uvt
$

$\gcd(a-c,b-c)=1\Rightarrow t=1$

$\\a-c=u^2\\
b-c=v^2\\
a+b=(u+v)^2$

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение23.10.2017, 12:21 
Заслуженный участник


03/01/09
1717
москва
5. Пусть $F(x)=\int\limits_0^\infty\frac{t^{\alpha-1}dt}{(1+t^\beta)^x}\,\,(\beta>\alpha>0).$ Найдите $\lim\limits_{x\to +\infty}F(x).$

$F(x)=\int \limits _0^1+\int \limits _1^{\infty },\,\,\int \limits _1^{\infty }<\int \limits _1^{\infty }\dfrac {t^{\beta -1}dt}{(1+t^{\beta })^x}=\dfrac 1{\beta (x-1)2^{x-1}}\to 0$$$\int _0^1=\int _0^{\delta (x)}+\int \limits _{\delta (x)}^1, \text {возьмем}\,\,\delta (x)=x^{-\frac 1{2\beta }},\text {тогда}
\int _0^{\delta (x)}<\delta (x)\to 0,

\int _{\delta (x)}^1<\dfrac 1{(1+\delta (x)^{\beta })^x}=\dfrac 1{\left ((1+\frac 1{\sqrt {x}})^{\sqrt {x}}\right )^{\sqrt {x}}}<2^{-\sqrt {x}}\to 0$$Таким образом $F(x)\to 0.$

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение15.11.2017, 17:37 
Заслуженный участник


11/05/08
32166
bot в сообщении #1258023 писал(а):
5. Пусть $F(x)=\int\limits_0^\infty\frac{t^{\alpha-1}dt}{(1+t^\beta)^x}\,\,(\beta>\alpha>0).$ Найдите $\lim\limits_{x\to +\infty}F(x).$

А зачем бета больше альфы? Он же в любом случае монотонно убывает, и есть суммируемая мажоранта.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение15.11.2017, 17:40 


21/05/16
4292
Аделаида
У вас цитирование нарушилось.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение15.11.2017, 18:08 
Заслуженный участник


11/05/08
32166
Да, не на ту "вставку" нажал. Исправил.

-- Ср ноя 15, 2017 19:21:57 --

bot в сообщении #1258023 писал(а):
1. Определитель ортогональной матрицы $Q$ равен -1.
Докажите, что среди её собственных чисел есть -1.

У неё комплексные собственные числа если есть, то попарно сопряжены.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение16.11.2017, 00:21 
Заслуженный участник


10/01/16
2318
bot в сообщении #1258023 писал(а):
2. В клетках таблицы $10\times 10$ одной из диагоналей стоят минусы, а в остальных клетках таблицы --- плюсы.
Разрешается сменить знаки на противоположные во всех клетках любой строки или столбца.
Можно ли после нескольких таких преобразований получить таблицу, в которой на одной из диагоналей и выше её стоят плюсы, а ниже --- минусы?

Сохраняется четность кол-ва минусов, однако. Но в начале их 10, а в конце - 45. Нельзя, значить....

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение19.11.2017, 11:13 
Заслуженный участник
Аватара пользователя


21/12/05
5936
Новосибирск
DeBill в сообщении #1265653 писал(а):
Сохраняется четность кол-ва минусов, однако.

Однако да, а я к $\pm$ единички прислонил и определители считал, поэтому 1 курсу не дал. В проверке не участвовал, поэтому не знаю были ли такие решения. Надо было нечётного порядка >3 матрицу давать. А с тройкой что-то сходу не получилось и инварианта не подберу.

Не сразу заметил, что есть ещё два упоминания.
ewert в сообщении #1265530 писал(а):
А зачем бета больше альфы?

А и в самом деле зачем - всё одно функция определена.
ewert в сообщении #1265543 писал(а):
У неё комплексные собственные числа если есть, то попарно сопряжены.

Ну да, так ещё проще.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение19.11.2017, 21:15 
Заслуженный участник


10/01/16
2318
bot в сообщении #1266680 писал(а):
Однако да

Можно даже проще: четность сохраняется и в любом "подквадратике" (пересечении пары строк и пары столбцов) два на два. Это проходит тогда и для 3 на 3...

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение19.11.2017, 21:52 
Аватара пользователя


01/12/11

8634
bot в сообщении #1258023 писал(а):
35 Сибирская математическая олимпиада
22 октября 2017 г.

Вузы с непрофилирующей математикой, 2-4 курсы

1. Найдите все $n$, для которых возможно найти $n$ простых чисел, таких что сумма любых трёх из них тоже простое число.


Ответ: 3; 4.

Пример для трёх чисел: 2, 2, 3.
Для четырёх: 3, 3, 5, 5.

При наличии 5 и более чисел найдутся либо три числа, дающие одинаковые останки при делении на 3, либо 3 числа, дающие попарно различные остатки при делении на 3. Сумма трёх таких чисел будет кратна трём, а также будет не меньше 6 (ибо сумма трёх простых), из чего следует её составнота (ситуативный антоним слова простата).

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение20.11.2017, 01:30 
Заслуженный участник
Аватара пользователя


21/12/05
5936
Новосибирск
Ktina в сообщении #1267043 писал(а):
Пример для трёх чисел: 2, 2, 3

Вижу 2 числа, двойка произносится с заиканием.
DeBill в сообщении #1267028 писал(а):
Можно даже проще

:oops: :lol: Берём подквадрадик $2\times 2$ и плюём на всё остальное.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение20.11.2017, 11:48 
Аватара пользователя


01/12/11

8634
bot в сообщении #1267127 писал(а):
Ktina в сообщении #1267043 писал(а):
Пример для трёх чисел: 2, 2, 3

Вижу 2 числа, двойка произносится с заиканием.

Можно и попарно различные.
Для трёх:
5, 7, 11
Для четырёх:
7, 11, 13, 23
(суммы по три числа будут равны 31, 41, 43 и 47)

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение23.11.2017, 16:06 
Заслуженный участник


11/05/08
32166
bot в сообщении #1254054 писал(а):
4. Пусть $a_0>0,\,\, a_{n+1}=\sqrt{a_n}+\frac1{n+2}.$ Докажите сходимость этой последовательности и найдите её предел.

До тех пор, пока $a_n<1$, последовательность монотонно возрастает. Поэтому предел (если он есть) может быть только положительным и, следовательно, только единицей. Это было необязательное вступление (подводка); теперь -- собственно формальное решение.

Обозначим $\frac1{n+2}=\delta_n$; сделаем замены $a_n=1+\varepsilon_n$ и затем $b_n=2^n\varepsilon_n$. Тогда из $1+\varepsilon_{n+1}=\sqrt{1+\varepsilon_n}+\delta_n$ следует $\varepsilon_{n+1}\leqslant\frac{\varepsilon_n}2+\delta_n$, т.е. $b_{n+1}\leqslant b_n+2^{n+1}\delta_n$. Из стремления $\delta_n$ к нулю, в свою очередь, следует, что $b_n$ много меньше, чем $2^n$, поскольку в сумме $\sum\limits_{k=1}^n 2^{k+1}\delta_k\geqslant b_{n+1}-b_0$ первая половина слагаемых оценивается сверху через $2^{\frac{n}2}$, вторая же не превосходит $2^{n+2}\max\limits_{k\geqslant n/2}\delta_k$. Следовательно, $\varepsilon_n=2^{-n-1}b_n\to0$.

-- Чт ноя 23, 2017 17:30:47 --

bot в сообщении #1258023 писал(а):
4. Пусть $0 < a, b, c<1$ и $ab + bc + ca = 1$.
Найдите наименьшее значение выражения $$\frac{a}{1-a^2} + \frac{b}{1-b^2} + \frac{c}{1-c^2}.$$

В лоб. Фиксируем любое $c$ и обозначаем минимизируемое выражение как $f(a,b(a))$, где $b(a)$ определяется из уравнения $(b+c)(a+c)=1+c^2$. Тогда $b'(a)<0$ и, следовательно, производная $f'=\frac{1+a^2}{1-a^2}+\frac{1+b^2}{1-b^2}\cdot b'(a)$ отрицательна при $a<b$ и положительна при $a>b$. Т.е. для любого фиксированного $c$ минимум достигается при $a=b$; далее -- теорема Вейерштрасса.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение23.11.2017, 18:44 
Заслуженный участник


11/05/08
32166
bot в сообщении #1258023 писал(а):
1. Сумма любых 1008 из данных 2017 действительных чисел не превосходит суммы остальных 1009 чисел.
Докажите, что все эти 2017 чисел неотрицательны.

Пусть $x$ -- какое-нибудь из чисел, $S_1$ -- сумма какой-либо половины оставшихся (неважно какой) и $S_2$ -- сумма другой половины. Тогда по условию $x+S_1\geqslant S_2$ и в то же время $x+S_2\geqslant S_1$.

bot в сообщении #1258023 писал(а):
2. Пусть $x\in \mathbb R.$ Докажите, что $x+\sqrt{3}$ и $x^3+5\sqrt{3}$ не могут быть одновременно рациональны.

Надо просто представить $x=q-\sqrt3,\ \ q\in\mathbb Q$ и тупо возвести его в куб. Тогда всё сведётся к невозможности равенства $3q^2=2$ (надеюсь, его не требовалось доказывать?)

bot в сообщении #1258023 писал(а):
4. Внутри параллелограмма $ABCD$ взяли точку $E$ так, что $|CE|=|CB|.$ Пусть $F$ и $G$ середины $CD$ и $AE$ соответственно. Докажите, что прямая $FG$ перпендикулярна $BE$.

Без векторов тут, наверное, не очень хорошо, а с векторами -- более-менее автоматически. Если $\overrightarrow{AB}=\vec a$, $\overrightarrow{AD}=\vec b$ и $\overrightarrow{BE}=\vec c$, то и $\overrightarrow{FG}=\frac{\vec a+\vec c}2-\left(\vec b+\frac{\vec a}2\right)=\frac{\vec c}2-\vec b$. Но это -- в точности высота в равнобедренном треугольнике $BEC$ с основанием $BE$.

bot в сообщении #1258023 писал(а):
5. Какое наименьшее значение может принять сумма $|x_2-x_1|+|x_3-x_2|+...+|x_{100}-x_{99}|+|x_1-x_{100}|$,
если $\{x_1,x_2,...x_{100}\}=\{1,2,...100\}?$

Можно считать, что $x_1=1$. Добавим в конец этой последовательности ещё одну единичку. Тогда на участке от начальной единички до сотни последовательность должна монотонно возрастать, на участке от сотни до завершающей единички -- убывать. Поскольку если хоть на одном из этих участков монотонность нарушится, то сумма модулей разностей по этому участку окажется больше девяноста девяти.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение24.11.2017, 16:06 
Заслуженный участник


03/01/09
1717
москва
bot в сообщении #1258023 писал(а):
4. Самолет облетает земной шар по экватору за 24 часа. Города A и B расположены на одной параллели в 3-х часах лёта до северного полюса и различаются астрономическим местным временем на 6 часов.
Найдите кратчайшее время для перелёта из A в B.

Координаты $A$ и $B: 45^°$ с.ш. По долготе $A$ и $B$ смещены на 90°. Отсюда находим, что длина дуги большого круга $AB$ равна $\frac 16 $ длины экватора, и, следовательно, время полета - 4 часа.

-- Пт ноя 24, 2017 17:31:06 --

bot в сообщении #1258023 писал(а):
3. Квадратная матрица порядка $n$ составлена из нечётных чисел. Докажите, что её определитель делится на $2^{n-1}.$

По индукции. Для $n=2$ утверждение справедливо. Пусть оно уже доказано для матриц порядка $n-1$. Докажем, что оно справедливо и для порядка $n$.Для этого к первой строке матрицы порядка $n$ прибавим вторую строку (это не изменит ее определитель). В первой строке новой матрицы четные числа. Раскроем определитель новой матрицы по первой строке. Очевидно определитель новой матрицы делится на $2^{n-1}$, т.к. он равен сумме произведений четных чисел на определители порядка $n-1$ с нечетными элементами.

 Профиль  
                  
 
 Re: Олимпиада НГУ - 2017
Сообщение24.11.2017, 18:34 
Заслуженный участник


11/05/08
32166
А почему про пятую задачку -- про "инь с серпами" -- никто ничего не выкладывает? потому, что она малоолимпиадна?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group