Работаю со статьёй о совершенных квадратах по ссылке
http://www.geocities.com/~harveyh/most-perfect.htm
Как я и предполагала, статья дала мне много новой информации. До сих пор нигде не встречала точного определения совершенных квадратов. Вот какое определение даётся в этой статье (в переводе, сделанном Google):
Определение
1. Every 2 x 2 block of cells (including wrap-around) sum to 2T (where
) (ie compact) Каждые 2 х 2 блока ячеек (в том числе завершение всего) на сумму 2T (где
) (то есть компактный)
2. Any pair of integers distant
along a diagonal sum to T (ie complete) Любая пара чисел дальних
вдоль диагонали сумму T (т.е. полный)
3. Doubly-even pandiagonal normal magic squares (ie order 4, 8, 12, etc using integers from 1 to n^2 ) Вдвойне-даже pandiagonal нормальный магический квадратов (т.е. порядка 4, 8, 12 и т.д. с помощью чисел от 1 до n^2)
Понятное определение? Попытаюсь пояснить подробнее, как сама поняла.
Свойство 1 означает, что в совершенном квадрате сумма чисел в любом квадрате 2х2 равна 2T , где
.
Я долго думала, что означает фраза “в том числе завершение всего”. И, наконец, поняла так: если совершенный квадрат свернуть в цилиндр (по любой оси), то суммы во всех квадратах 2х2, образовавшихся на стыке двух краёв квадрата, тоже должны быть равны 2T. Как мне кажется, для выполнения этого свойства необходимо, чтобы сумма чисел в угловых ячейках квадрата была равна 2T.
Свойство 2 назову свойством комплементарности. По данному определению в совершенном квадрате на диагонали любая пара чисел, находящихся друг от друга на расстоянии
ячеек, даёт в сумме
. Причём это свойство выполняется на всех диагоналях, как главных, так и разломанных.
Свойство 3 говорит о том, что совершенный квадрат должен быть пандиагональным. Правда, мне непонятно, что значит “doubly-even pandiagonal”. В переводе это получилось так: “вдвойне-даже pandiagonal”. Что значит “вдвойне пандиагональный”?
Замечу, что я отметила в своей статье о совершенных квадратах 9 свойств.
Интересно отметить, что первая публикация о совершенных квадратах относится к 1897 г. Вот какие древние, оказывается, совершенные квадраты! Из указанной статьи ссылки на публикации:
McClintock, E. (1897) О самых совершенных форм магии квадратов, с методами для их производства. American Journal математики 19 п. 99-120.
Ollerenshaw, К. (1986) On ‘most perfect’ or ‘complete’ 8 x 8 pandiagonal magic squares. Proceedings of the Royal Society of London A407, p.259-281 (1986) On 'наиболее совершенной "или" полный "8 х 8 pandiagonal магический квадратов. Труды Королевского общества в Лондоне A407, p.259-281
Kathleen Ollerenshaw and David Brée, Most-perfect Pandiagonal Magic Squares, Institute of Mathematics and its Applications, 1988, 0-905091-06-X Кэтлин Ollerenshaw и Дэвид Brée, наиболее совершенной Pandiagonal Magic площади, Институт математики и ее приложения, 1988, 0-905091-06-X
Как бы я хотела иметь качественный перевод хоть одной из этих работ!
Я уже говорила о совершенном квадрате восьмого порядка, который приведён в этой статье и ранее был найден мной в другой статье. Попробовала сейчас построить совершенный квадрат 12-ого порядка по аналогии с этим квадратом. Интересный получился квадрат! Он пандиагональный, в нём выполняется свойство комплементарности. И суммы во всех квадратах 2х2 равны 2T=290. Не хватает только одного: сумма в угловых ячейках квадрата не равна 290. Покажу этот почти совершенный квадрат (мы имеем новую оригинальную схему построения пандиагональных квадратов 12-ого – и не только – порядка):
Код:
1 24 25 48 49 72 127 138 79 90 103 114
143 122 119 98 95 74 17 8 65 56 41 32
3 22 27 46 51 70 129 136 81 88 105 112
141 124 117 100 93 76 15 10 63 58 39 34
5 20 29 44 53 68 131 134 83 86 107 110
139 126 115 102 91 78 13 12 61 60 37 36
18 7 66 55 42 31 144 121 120 97 96 73
128 137 80 89 104 113 2 23 26 47 50 71
16 9 64 57 40 33 142 123 118 99 94 75
130 135 82 87 106 111 4 21 28 45 52 69
14 11 62 59 38 35 140 125 116 101 92 77
132 133 84 85 108 109 6 19 30 43 54 67
Выразила сумму чисел в угловых ячейках квадрата для любого порядка n=4k, k=2, 3, 4,… через порядок квадрата. Получилось такое выражение:
Составляю уравнение:
Это уравнение имеет единственное решение: n=8. Вот и получается, что по данной схеме строится только совершенный квадрат восьмого порядка.
Далее, в статье приведён совершенный квадрат 12-ого порядка с другой схемой расположения первых 12 чисел. Я такую начальную цепочку ещё не встречала. И что самое удивительное: этот квадрат “не берётся” методом качелей! Никак не могу проникнуть в схему построения этого квадрата. Но ведь каким-то методом квадрат построен! Не просто так – наобум – заполнялась матрица. Вот задача для всех: постройте хоть один совершенный квадрат, подобный приведённому, то есть имеющий точно такую начальную цепочку. А для того, чтобы это сделать, вам придётся “расколоть” метод построения этого квадрата. Приведу здесь этот совершенный квадрат в немного преобразованном виде:
Код:
1 126 20 112 3 110 36 127 17 141 34 143
40 123 21 137 38 139 5 122 24 108 7 106
9 118 28 104 11 102 44 119 25 133 42 135
48 115 29 129 46 131 13 114 32 100 15 98
49 78 68 64 51 62 84 79 65 93 82 95
88 75 69 89 86 91 53 74 72 60 55 58
109 18 128 4 111 2 144 19 125 33 142 35
140 23 121 37 138 39 105 22 124 8 107 6
101 26 120 12 103 10 136 27 117 41 134 43
132 31 113 45 130 47 97 30 116 16 99 14
61 66 80 52 63 50 96 67 77 81 94 83
92 71 73 85 90 87 57 70 76 56 59 54
Обратите внимание: в этом квадрате сумма чисел в угловых ячейках равна 290. При всех параллельных переносах на торе квадрат останется совершенным.
Интересен в статье нетрадиционный совершенный квадрат 6-ого порядка. Посмотрите!
***
Очень хотелось бы получить комментарии. Потому что с трудом понимаю статьи на английском, а на русском языке не встречала ни одной статьи о совершенных квадратах.