2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 18, 19, 20, 21, 22  След.
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:40 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
g______d в сообщении #1210567 писал(а):
Что вы подразумевали под тем, что написали, меня мало интересует. Важно впечатление читателя о ваших фразах. Если вы пишете что-то, что 99% читателей интерпретируют указанным мной способом

Укажите объем выборки читателей, обоснуйте ее репрезентативность, а уж потом делайте свои клеветнические выводы:
g______d в сообщении #1210567 писал(а):
а потом заявляете, что говорили нечто другое, то у вас либо серьёзные проблемы с выражением своих мыслей, либо изначальной целью ваших сообщений был троллинг.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:42 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Brukvalub в сообщении #1210571 писал(а):
Укажите объем выборки читателей, обоснуйте ее репрезентативность, а уж потом делайте свои клеветнические выводы:


Всё проще -- пусть кто-то из читателей этой ветки честно признается, что как-то по-другому воспринял эту фразу.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:42 
Заслуженный участник


27/04/09
28128
Если кому-то нужно впечатление стороннего наблюдателя, я воспринимал точки зрения Brukvalub и GOLOTOPAXPOP в этой теме практически одинаково полярными (и наиболее полярными с соответствующих сторон из всех высказываемых в теме). :| Конкретные фразы — уже не помню как воспринимались.

-- Ср апр 19, 2017 00:43:44 --

И при этом же большинство фактов было внесены другими участниками.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:46 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Brukvalub в сообщении #1210566 писал(а):
Как же надоели ваши передергивания! Если Голод находится на переднем крае гомологической алгебры и применяет в ней ТК, то как это противоречит тому


Не противоречит, но приводить его в качестве довода довольно смешно.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:50 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
g______d в сообщении #1210573 писал(а):
Всё проще -- пусть кто-то из читателей этой ветки честно признается, что как-то по-другому воспринял эту фразу.
Стандартный демагогический прием! Мне, видите-ли заранее вменена вина, поскольку ее увидел САМ g______d!!!!, но оправдать меня могут другие, если захотят. А если не захотят, например, поленятся? С равным успехом меня можно обвинить в убийстве Кеннеди, если никто не скажет, что в тот момент он видел меня в другом месте.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение18.04.2017, 22:54 


20/03/14
12041
 !  Отдыхаем двое суток.
Но оговорюсь сразу: ради продолжения шапкозакидательства я тему не открою. Продолжайте в ЛС, если есть охота.

 i  GAA:
Продолжившееся после открытия темы разжигание флейма отделено в Чулан.(21.04.2017)

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение21.04.2017, 18:52 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Я в разжигании флейма не заинтересован. Но прозвучала пара чисто фактографических вещей, которым полезно остаться в этой теме, хотя бы в качестве справочника и ссылок. Так что процитирую:
    GOLOTOPAXPOP в сообщении #1211265 писал(а):
    ...Алгебраическая геометрия в её современном проявлении (схемы, алгебраические стэки, теории когомологий схем и алгебраических многообразий, мотивы и мотивная теория гомотопий и т.д.), алгебраическая топология (спектры, спектральные последовательности, стабильная и нестабильная теория гомотопий, хроматическая теория гомотопий и т.д.), алгебраическая К-теория (тоже, кстати, связанная с мотивами), а также синтезированная с алгебраической геометрией и алгебраической топологией.
    Это все наиактивнейшие и наикрупнейшие области математики сейчас, ничуть не уступающие в этих характристиках дифференциальной геометрии многообразий или геометрической теории УрЧП.
    ...Что насчет работ Орлова и Каледина?
    Некоммутативная алгебраическая геометрия в современном проявлении - это сполшная "категорная" гомологическая алгебра.
    Из аналитических сюжетов можно вспомнить работы Шапиры и Кашивары в алгебраическом и микролокальном анализе, теории D-модулей.
    Все это математика, где ни о чем невозможно говорить без категорий, причем вовсе не "закрытые" и "узкие" разделы, в них много чего ещё можно сделать, и у каждого из них множестве пересечений и с другими разделами.
Добавлю, что "абстрактная чушь" (https://en.wikipedia.org/wiki/Abstract_nonsense) - это не то, что придумали здесь в полемическом запале, а известный и распространённый в математике термин, который сами специалисты воспринимают гораздо более миролюбиво и с юмором.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение21.04.2017, 19:45 
Заслуженный участник
Аватара пользователя


31/01/14
11348
Hogtown
Munin в сообщении #1211366 писал(а):
Но прозвучала пара чисто фактографических вещей,
Ну не совсем фактографических, а скорее оценочных:
Цитата:
Из аналитических сюжетов можно вспомнить работы Шапиры и Кашивары в алгебраическом и микролокальном анализе, теории D-модулей.

Скорее всего "и" здесь лишнее, "алгебраический микролокальный анализ" в духе Сато-Каваи-Кашивары и примкнувшим к ним Шапира и где-то Бони хотя и содержит "содержательные" результаты по поводу аналитических и гиперфункциональных решений, но эти результаты можно и понять и доказать без ТК и они в общем контексте где-то далеко сбоку. Грубо говоря "рассмотрим эти уравнения в комплексной области", что делал, например в 30-е годы И.Г.Петровский.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение21.04.2017, 20:34 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Munin в сообщении #1211366 писал(а):
Добавлю, что "абстрактная чушь" (https://en.wikipedia.org/wiki/Abstract_nonsense
) - это не то, что придумали здесь в полемическом запале, а известный и распространённый в математике термин, который сами специалисты воспринимают гораздо более миролюбиво и с юмором.

Тогда уж и я добавлю, что термин "абстрактная чепуха" я и употреблял именно потому, что так язык стрелок и коммутативных диаграмм называл Н. Стинрод, который первым и предложил такой термин. Так что "полемический запал" - это не ко мне.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение21.04.2017, 20:35 
Заслуженный участник
Аватара пользователя


09/02/09
2092
Минск, Беларусь
Вау, какой поток эмоций тут.

Меж тем, спасибо за наводку на книгу Шафаревича. Порой и в холиворе мелькает что-то полезное.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение21.04.2017, 22:04 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Red_Herring в сообщении #1211389 писал(а):
Ну не совсем фактографических, а скорее оценочных

Вот этого я оценить не в силах.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение24.04.2017, 04:31 
Аватара пользователя


16/03/17
475
Еще одно пособие по теории категорий (62 стр.), возможно будет полезно: Г. В. Кондратьев "Категории. Начальный курс."

Аннотация:
"Теория категорий в России не входит в учебные программы университетов и в тоже время является фундаментальной и необходимой частью математического образования. Учебное пособие рассчитано на первое ознакомление с теорией категорий широкого круга читателей, школьников, студентов, научных работников разных специальностей."

Из вступления:
"...Теория категорий предлагает язык достаточно выразительный для многих понятий, конструкций и теорий в математике, который часто делает явными какие-то скрытые стороны теории и позволяет по новому взглянуть на вещи".

Пособие рекомендуется среди основной литературы в спецкурсе "Основы теории категорий", читаемом кафедрой математики физфака МГУ.

Аннотация этого спецкурса тоже довольна уместна в рамках данного топика:
"Теория категорий представляет собой попытку математиков раскрыть фундаментальные принципы, общие для различных областей математики. Грубо говоря, категория представляет класс однотипных математических структур, скажем, групп, линейных пространств, топологических пространств и т.д. и соотношения между ними. Многие важные математические конструкции, встречающиеся в различных областях математики (например, понятия произведения групп, линейных или топологических пространств), получают в терминах теории категорий единообразное и изящное выражение. Наиболее интересные результаты теории категорий связаны с понятиями функтора ("отображения" одной категории в другую) и естественного преобразования ("трансформирующего" один функтор в другой). Так понятие сопряженного функтора изящно описывает, скажем, пополнение метрических пространств, наделение множества дискретной (или антидискретной) топологией, образование свободной группы и многие другие важные понятия соответствующих математических дисциплин.

В спецкурсе рассматриваются основные понятия и конструкции теории категорий. Изложение сопровождается примерами из теории множеств, алгебры, топологии. Вкратце рассматриваются некоторые приложения теории категорий к алгебраической теории систем, универсальным алгебрам, теории преобразователей информации."

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение24.04.2017, 10:08 
Аватара пользователя


29/01/15
298
ВШЭ, НМУ
Odysseus в сообщении #1212161 писал(а):
Пособие рекомендуется среди основной литературы в спецкурсе "Основы теории категорий", читаемом кафедрой математики физфака МГУ.

Аннотация этого спецкурса тоже довольна уместна в рамках данного топика:


Она не уместна. Вы даже не представляете, насколько неудачный пример приводите. Знаете, в жизни не всё, что написано на заборе кафедральном сайте -- правда. В реальности, конечно, никакого спецкурса по теории категорий на физфаке уже давно нет. А, например, спецкурс по теории групп проводится лишь в объёме трёх-четырёх пар за весь весенний семестр пятого года обучения, примерно то же со всякими дифференциальными геометриями и прочими важными для общего математического кругозора вещами. Вот уж кто-кто, а средний выпускник кафедры математики физфака не знает ни то, что категорий, он не знает, что такое группа или кольцо, что такое гладкое многообразие или связность в расслоении... Я не преувеличиваю. Так что если в качестве аргумента приводить "так учат математике физиков из МГУ", то с удивлением обнаружим, что надо знать только разложение в ряд Тейлора и "о/О-нотацию". Пожалуйста, никогда больше не приводите это недоразумение в качестве примера математического образования. Это пример того, как учить математике не надо.

(Оффтоп)

Не сочтите за разжигание флейма. Будет очень жаль, если мой ответ, отражающий реальность, уедет в Чулан, а оригинальный пост со скопированными пустыми красивыми словами останется в оригинальной теме.

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение24.04.2017, 10:24 
Аватара пользователя


16/03/17
475
Hasek в сообщении #1212188 писал(а):
Так что если в качестве аргумента приводить "так учат математике физиков из МГУ", то с удивлением обнаружим, что надо знать только разложение в ряд Тейлора и "о/О-нотацию". Пожалуйста, никогда больше не приводите это недоразумение в качестве примера математического образования.

Вы увидели в моем посте то, чего там не было. Цитаты были на тему роли теории категорий в математике. Они верны независимо от того, ведется на физфаке этот спецкурс или уже нет. Физфак я не приводил в пример, с мехматом его не сравнивал, а страница спецкурса была приведена только потому, что ссылки и цитаты были взяты оттуда. Если "читаемом" надо заменить на "читавшемся" - ок, но сути это не касается, а обсуждать где и как учат - я не хочу.

(Оффтоп)

... хотя и мог бы, поскольку сам заканчивал физфак МГУ и, к сожалению, вынужден подтвердить в целом низкий уровень преподавания и учебников по математике. Несмотря на все достоинства уважаемого профессора Шишкина, учить только линейной алгебре без какого-либо обучения "обычной" алгебре - очень неудачно и ничего не позволяет понять, а учебники Ильина-Позняка ИМХО одни из самых плохих которые только можно найти. Но с другой стороны, там был великолепный профессор Арсеньев, читавший в математической группе анализ по Зоричу, а потом функциональный анализ и обобщенные функции на современном уровне... и можно было ходить на мехмат слушать лекции Арнольда и других преподавателей... и, самое главное, учиться надо самому, не ссылаясь на "плохих преподавателей", "плохие рекомендованные учебники" и прочие внешние факторы

 Профиль  
                  
 
 Re: "Категорный" vs "некатегорный" подход
Сообщение24.04.2017, 16:29 
Заслуженный участник
Аватара пользователя


09/02/14

1377
У нас в Киеве есть семинар по более-менее продвинутой ТК, который даже записывается, так как подобного русскоязычного материала в сети мало, то, пожалуй, прорекламирую. ^^

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 325 ]  На страницу Пред.  1 ... 18, 19, 20, 21, 22  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group