Я всякий раз испытываю потрясение, когда узнаю, что какой-то с виду простой и естественный вопрос оказывается очень сложным. Чем проще и естественнее вопрос, тем сильнее потрясение.
Вот вот, именно такое потрясение вызывает нерешённость задач, связанных со вложенными функциями и, как частный случай, рекуррентными последовательностями.
Переход от вида

к виду

исчерпывающе решён только для линейных

и может быть решён для нескольких элементарных функций. Остальное - туман дремучий.
Так же как поиск промежуточных функций, например задача о поиске

в уравнении

.
Ну здесь об этом я поднимал уже не одну тему.
В частности, странно, что преобразование Лапласа "не умеет" обрабатывать вложенные функции.