10. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.
Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек. Тем самым, она равна

Если это задание из части В, то ответ

- неверный. Хехе.
Задача не сформулирована полностью. Т.е. нужны какие-то дополнительные сведения. Это могут быть какие-то договорённости школьной программы или представления о реальной жеребьёвке.
Если исходить из моих представлений о жеребьёвке, то ответ — неправильный.
Ответ

верный для всякой разумной жеребьёвки.
Предположим, что при каком-то способе жеребьёвки вероятность команды России выбрать 2-ю карточку равна

.
Предположим, что ещё перед жеребьёвкой кто-то переправил все номера

на карточках на номера

, а все номера

на номера

. В этой новой ситуации вероятность команды России выбрать 1-ю карточку равна

(потому что физически это те же самые карточки).
С другой стороны, так как карточки перемешаны, подобная операция исправления номеров эквивалентна дополнительному перемешиванию карточек без всякого исправления, т.е. вообще ни на что не влияет. Поэтому и в изначальной ситуации (без исправлений) вероятность команды России выбрать 1-ю карточку равна

.
Аналогично, вероятность команды России выбрать третью карточку равна

, и вероятность выбрать четвёртую карточку тоже равна

. Вероятность попасть хоть в какую-то из четырёх групп равна

, откуда

.
Говоря проще. Все четыре группы команд совершенно равноправны. Любой способ жеребьёвки, не содержащий подглядывание в карточки, ведёт к одинаковой вероятности выбрать любую из карточек.