2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6 ... 16  След.
 
 
Сообщение24.04.2008, 13:47 
Экс-модератор


17/06/06
5004
Коровьев писал(а):
Выбирайте.
А кто сказал, что среди ваших вариантов есть правильный?

 Профиль  
                  
 
 
Сообщение24.04.2008, 14:33 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Давидюк везде парадоксов найдёт...

Давайте сделаем так:

Шаг 1. Кладём шар номер 1 в ящик.

Шаг 2. Убираем из ящика всё, что там лежит, после чего кладём туда шары с номерами 2 и 3.

Шаг 3. Убираем из ящика всё, что там лежит, после чего кладём туда шары с номерами 4, 5 и 6.

Шаг 4. Убираем из ящика всё, что там лежит, после чего кладём туда шары с номерами 7, 8, 9 и 10.

Ну и так далее. Когда все шаги пройдут, что в ящике останется?

 Профиль  
                  
 
 
Сообщение24.04.2008, 15:02 
Заслуженный участник
Аватара пользователя


23/08/07
5492
Нов-ск
Ну хватит уже над шарами издеваться.
1) за 1/2 минуты до полудня левой ногой Литллвуд ступает в ящик, правая - снаружи
2) за 1/3 минуты до полудня он прыжком меняет положение ног
3) и т.д.
Где будет каждая из ног Литллвуда в полдень?

 Профиль  
                  
 
 
Сообщение24.04.2008, 15:25 
Экс-модератор


17/06/06
5004
В последнем варианте соответствующий предел последовательности множеств не существует. В предыдущих - существует.

По-моему, пора бы упомянуть это (впрочем, общеизвестное) определение.

Если $\{A_k\}_{k=1}^\infty$ -- последовательность подмножеств некоторого множества $X$, то

$$\varlimsup_{k\to\infty} A_k\buildrel{\mathrm{def}}\over{=}\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k$$ -- множество точек $X$, принадлежащих бесконечно многим $A_k$.
$$\varliminf_{k\to\infty} A_k\buildrel{\mathrm{def}}\over{=}\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k$$ -- множество точек $X$, принадлежащих всем $A_k$, кроме конечного числа.

Если $$\varliminf_{k\to\infty}A_k=\varlimsup_{k\to\infty} A_k$$, то это множество обозначается символом $$\lim_{k\to\infty}A_k$$ и называется пределом последовательности $A_k$.

Трактовка упомянутых задач в свете этого определения мне лично кажется естественной.

 Профиль  
                  
 
 
Сообщение24.04.2008, 16:16 
Заслуженный участник


08/04/08
8562
Попробую (хотя чувствую, что бесполезно :) ) резюмировать:
1. Число шаров стремится к бесконечности.
2. Ни одного шара не останется (особенно хорошо сказал Юстас)
Требуется уточнять формулировку задачи:
Надо различать шары (например, как элементы множеств) и их количество (мощность множества) (Наверняка даже такая теория есть :) )Будем говорить, что шар останется в корзине, если начиная с некоторого шага он всегда присутствует в корзине. Тогда очевидно, что количество шаров стремится к бесконечности, но в итоге ни одного шара не останется. Парадокса нет - это психологическая иллюзия у того, кто пристально не присмотрелся к процессу.

 Профиль  
                  
 
 
Сообщение24.04.2008, 16:39 
Заслуженный участник
Аватара пользователя


10/10/07
715
Южная Корея
Как же так? Каждый раз кладут в 10 раз больше шаров чем вынимают. Ну хорошо, каждый номер в конечном итоге будет вынут. Но вместо него еще 10 прибавится? Юстас наверно и правда хорошо сказал, только я не понял ничего. Нельзя ли объяснить не в множествах и подмножествах, а в шарах и минутах. Задача то формулировалась в этих терминах?

 Профиль  
                  
 
 
Сообщение24.04.2008, 17:41 
Заслуженный участник


05/09/05
515
Украина, Киев
Задача непростая, неоднозначная. Поэтому предлагаю внимательно контролировать каждый шаг. Фиксировать не только сколько взяли и сколько положили шаров, но и сколько осталось. Давайте введем функцию на множестве натуральных чисел, значение которой будет количество оставшихся шаров. Очевидно она неотрицательна и возрастает на всей области определения, причем неограниченно. Следовательно ответ - бесконечное количество шаров.

Впрочем, может это задача сродни теореме Гёделя и ответ на данную задачу невозможно отнести ни к истине, ни ко лжи... :lol:

 Профиль  
                  
 
 
Сообщение24.04.2008, 18:54 
Заблокирован


24/04/08

56
Эта проблема давно решена. Кого интересует конкретный разговор - пишите в личку. :wink:

 Профиль  
                  
 
 
Сообщение24.04.2008, 18:56 
Заслуженный участник
Аватара пользователя


07/03/06
1898
Москва
Если попытаться смоделировать этот процесс, то ясно, что мы не можем положить и вынуть шарик мгновенно. Поэтому, когда отставшееся до полудня время меньше времени вынимания (кладки) шарика, мы ничего не сможем положить и вынуть. Так что, сколько останется зависит от указанных длительностей вынимания (кладки), а задача не имеет отношения к действительности и живет только в воображении.

 Профиль  
                  
 
 
Сообщение24.04.2008, 19:15 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
juna писал(а):
задача не имеет отношения к действительности и живет только в воображении


Само собой разумеется. А кто-нибудь думает иначе?

Вообще, я никак не могу понять, в чём проблема. Процесс устроен так, что он удаляет каждый шар. Поэтому никаких шаров остаться не может. Никакие подсчёты количества шаров на каждом шаге никакого отношения к этой задаче не имеют.

 Профиль  
                  
 
 
Сообщение24.04.2008, 19:34 
Заслуженный участник


05/09/05
515
Украина, Киев
Someone писал(а):
juna писал(а):
задача не имеет отношения к действительности и живет только в воображении


Само собой разумеется. А кто-нибудь думает иначе?

Вообще, я никак не могу понять, в чём проблема. Процесс устроен так, что он удаляет каждый шар. Поэтому никаких шаров остаться не может. Никакие подсчёты количества шаров на каждом шаге никакого отношения к этой задаче не имеют.


Это ещё надо доказать, что процесс построен правильно. Неужели Вы считаете его конструктивным, ну сослались бы ещё на аксиому выбора или что-то ещё. Задача как раз и поставлена неоднозначно.

Бог с этими шарами, давайте о других. Что по поводу парадокса Банаха-Тарского - это что тоже не парадокс? Но разве он не зависит от принятия или не принятия той же аксиомы выбора.

Я думаю, что и в данном случае вопрос в аксиоматике.
А разве изменение системы аксиом не приводит к построению совсем иной геометрии?
А что имеет и не имеет отношение к задаче это как раз и есть тема для дискуссии.

 Профиль  
                  
 
 
Сообщение24.04.2008, 19:40 
Заслуженный участник
Аватара пользователя


23/07/05
17976
Москва
Macavity писал(а):
Неужели Вы считаете его конструктивным, ну сослались бы ещё на аксиому выбора или что-то ещё.


Процесс описан конструктивно и однозначно, так как прямо указаны номера шаров, которые добавляются и которые удаляются, никакая аксиома выбора здесь не нужна. Ответ также совершенно однозначен.

Macavity писал(а):
Что по поводу парадокса Банаха-Тарского - это что тоже не парадокс?


А какой там парадокс?

Вы не путайте реальный мир с математическим.

 Профиль  
                  
 
 
Сообщение24.04.2008, 20:01 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
Грустно как-то всё это читать.

Есть такие замечательные конструкции, в которых техника перекладывания шаров по бесконечным ящикам доводится до совершенства. А тут какие-то настолько глупые споры разводят...

Вспоминается кто-то из древних греков, задавшийся неразрешимым вопросом:

Цитата:
Что более нравственно: считать число звёзд на небе чётным или нечётным?

 Профиль  
                  
 
 
Сообщение24.04.2008, 20:35 
Заслуженный участник


05/09/05
515
Украина, Киев
Профессор Снэйп писал(а):
Есть такие замечательные конструкции, в которых техника перекладывания шаров по бесконечным ящикам доводится до совершенства.


Это как раз и есть гвоздь программы. Раз их много значит ими не удовлетворены. А от таких споров в начале двадцатого века едва не рухнула математика, однако и возродилась по настоящему. Не грустите, она не рухнет!

Someone писал(а):
Процесс описан конструктивно и однозначно, так как прямо указаны номера шаров, которые добавляются и которые удаляются, никакая аксиома выбора здесь не нужна.


Ну как же не нужна. Я приведу небольшой пример.

Аксио́ма вы́бора утверждает: «Для каждого семейства A непустых непересекающихся множеств существует множество B, имеющее один и только один общий элемент с каждым из множеств X, принадлежащих A».

Далеко не все математики согласны с этой аксиомой. Можно её заменить другими.

Аксиома 1. Все натуральные числа образуют множество.
Аксиома 2. Для каждого конечного семейства A непустых конечных непересекающихся множеств существует множество B, имеющее один и только один общий элемент с каждым из множеств X, принадлежащих A.

Рассмотрим семейство можеств A, в которые входят множества X_i, каждое из которых состоит из удаляемых шаров на i-том шаге. То есть X_1 состоит из шара номер 1, X_2 состоит из шара 2 и т.д. X_i состоит из шара i. Применение Аксиомы 2 не гарантирует, что существует некое множество, которое имеет один общий элемент с каждым из X_i, но согласно Аксиоме 1 натуральные числа образуют именно множество. Получается, что то что будет изьято в виде шаров не есть множество натуральных чисел. Больше чем есть взять нельзя и значит взяли меньше. Какое-то количество шаров осталось.

Конечно, это не более чем абсолютно нестрогий набросок, однако как я писал аксиома выбора (её принятие или нет) порождает именно парадоксы (Парадокс Банаха-Тарского). Смотрите например - http://ru.wikipedia.org/wiki/%D0%9F%D0% ... 0%B3%D0%BE

P.S. Я думал, что в данном случае рассматривается математический мир...

P.P.S. Подправил одну опечатачку в примере.

 Профиль  
                  
 
 
Сообщение24.04.2008, 20:45 
Супермодератор
Аватара пользователя


29/07/05
8248
Москва
Macavity, не оффтопьте. Хотите обсуждать другие парадоксы - заводите отдельные темы.

 !  PAV:
:offtopic1:

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 232 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 16  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group