2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение14.06.2016, 19:47 


21/02/16
483
arseniiv в сообщении #1131555 писал(а):
Всё-таки только единица. :-) Если у нуля есть обратный, это сразу приводит нас к полю из одного элемента: $a =\ldots= 0(0^{-1}a) = 0$.

мне кажется Вы опять перепутали обратный и противоположный элементы (сам этим грешу) и невнимательно прочли мое сообщение :-)
irod в сообщении #1131524 писал(а):
каждый элемент является противоположным к самому себе; единица является обратным элементом к самой себе

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение14.06.2016, 20:26 
Заслуженный участник


27/04/09
28128
А, да. Мне сказали об этом в ЛС, но я неправильно понял и исправил в своём сообщении, а на вашу цитату не посмотрел. :|

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение15.06.2016, 11:57 


21/02/16
483
irod в сообщении #1131524 писал(а):
15. Существует ли поле из
а) двух элементов;
б) трех элементов;
в)* $p$ элементов, где $p$ -- простое;

Появилась у меня такая идея.
Т.к. 2 и 3 являются простыми числами, то пункты а),б) можно не рассматривать отдельно, а рассмотреть сразу пункт в). И ответ на все 3 пункта - да, существуют такие поля.

Пусть $\mathbb{F} = \{ 0,1,2,\ldots,p-1 \}$, где $p$ -- простое число.
Определим сложение элементов в $\mathbb{F}$ как сложение по модулю $p$:
$\forall a,b \ \ a + b = a + b \mod p$.
(Кажется такие поля называются полями вычетов по модулю $p$, но я специально не буду сейчас гуглить, хочу сам с вашей помощью разобраться)
При таком определении сложения, $0$ -- нейтральный элемент по сложению, т.е. удовлетворяет аксиоме 3: $\forall a \ (a + 0=a \mod p = a)$.
$1$ -- нейтральный элемент по умножению, т.е. удовлетворяет аксиоме 7: $\forall a \ (a \cdot 1 = a \mod p = a)$.
Для элемента $a$ противоположным будет элемент $p-a$, потому что $a + (p - a) \mod p = p \mod p = 0$.
Пусть обратным элементом к $a$ является $x$. Тогда $a \cdot x \mod p = 1$. Не знаю пока что с этим сделать дальше, можно ведь явную формулу для обратного элемента вывести? Наверняка да, я просто никогда не сталкивался с такими уравнениями.
Еще мне пока непонятно, почему $p$ -- именно простое, я кажется это тут никак не использую.
В общем это конечно же не законченное решение, я просто хочу спросить в правильную ли я сторону иду.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение15.06.2016, 12:38 
Аватара пользователя


07/01/15
1233
irod писал(а):
можно ведь явную формулу для обратного элемента вывести?

Не факт.

Лучше попробуйте рассмотреть частные случаи $-$ кольца вычетов по модулю $5$ , по модулю $7$ , по модулю $6$ . Авось, что-нибудь да придет на ум. Порассуждайте, как можно доказать существование обратного элемента.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение20.06.2016, 14:47 


21/02/16
483
Что-то я завяз. Нужны подсказки. Частные случаи с $p=5$ и $p=7$ рассмотрел, такие поля вычетов существуют, но непонятно как доказать общий случай для простого $p$. Для этого не надо знать теорию чисел?

Почему для какого-то ненулевого элемента может не существовать обратного, если $p$ -- не простое? Потому что тогда среди чисел $2,3,\ldots,p-1$ найдутся делители $p$, и результат деления любого произведения с такими элементами по модулю $p$ никогда не будет равен $1$ (а будет всегда равен либо $0$, либо будет делиться нацело на $q$, где $q$ -- и есть делитель $p$).
Например, в "поле вычетов" по модулю $4$ для элемента $2$ не существует обратного:
$2 \cdot 1 = 2 \mod 4 = 2$,
$2 \cdot 2 = 4 \mod 4 = 0$,
$2 \cdot 3 = 6 \mod 4 = 2$.
Значит, не существует поля вычетов по модулю $4$.

Еще пример. В "поле вычетов" по модулю $6$ для элемента $3$ также не существует обратного:
$3 \cdot 1 = 3 \mod 6 = 3$,
$3 \cdot 2 = 6 \mod 6 = 0$,
$3 \cdot 3 = 9 \mod 6 = 3$,
$3 \cdot 4 = 12 \mod 6 = 0$,
$3 \cdot 5 = 15 \mod 6 = 3$.
Следовательно, такого поля также не существует.

Эти два примера могли бы быть ответами на пункты г) и д), однако в примерах речь только про несуществование соответствующих полей вычетов, а существуют ли какие-нибудь другие поля с соответствующим числом элементов -- мне неизвестно (подозреваю что нет).

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение20.06.2016, 15:13 
Заслуженный участник


16/02/13
4214
Владивосток
Ну, попробуйте взять любую группу, любой элемент из неё и рассмотреть последовательность $1=a^0, a, a^2, a^3, \dots$ Начните да хоть с вычетов по простому модулю и посмотрите, что получится.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение21.06.2016, 08:36 
Аватара пользователя


07/01/15
1233
Пусть $a \in\mathbb{Z}_p, a \ne 0$. Существуют ли $b, c \in\mathbb{Z}_p, b\ne c$, такие, что $ab \equiv ac$? А если найду?

(Оффтоп)

Пункты г) и д) $-$ это что-то алгебраически абстрактное. Лучше не зацикливаться на этом, имхо.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение24.06.2016, 13:51 


21/02/16
483
Мне немного стыдно, но я устал биться с этой задачей, и посмотрел ее решение (доказательство) в Винберге (стр.29). Почувствовал что никакого прогресса в моих размышлениях даже с вашими подсказками нет, и надо просто прочитать это в книге. Не уверен, что я бы сам додумался до такого.
В доказательстве в Винберге неоднократно использовался тот факт, что $[a]_p + [b]_p = [a+b]_p$ и $[a]_p [b]_p = [ab]_p$, где $[a]_p$ -- вычет числа $a$ по модулю $p$. Как я понял, это называется согласованностью отношения сравнимости по модулю $p$ с операциями сложения и умножения в $\mathbb{Z}$. Вот где у меня была главная проблема, как мне кажется. Если бы я до этого дошел, то возможно и доказал бы дальше сам. И если со сложением все вроде бы понятно (и было раньше понятно), то даже после прочтения Винберга я все еще не понимаю, почему $[a]_p [b]_p = [ab]_p$. Надо перечитать еще несколько раз и в голове утрясти это дело.
Еще такой вопрос: задача 9 из этого листка ведь об отсутствии делителей нуля в поле, т.е. ее можно так перефразировать?

-- 24.06.2016, 13:59 --

Не, с согласованностью с умножением вроде все тоже понятно.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение26.06.2016, 15:57 


21/02/16
483
Сдается мне, я написал много фигни в своем сообщении выше. Привлек лишние понятия, и так в итоге и не разобрался с доказательством Винберга. Поэтому я отложил все книжки, и попробовал все-таки составить из каши в голове свое собственное доказательство, никуда не подглядывая. Прошу вас оценить, насколько у меня это получилось.

Тут до меня наконец-то дошел смысл этой подсказки:
SomePupil в сообщении #1133088 писал(а):
Пусть $a \in\mathbb{Z}_p, a \ne 0$. Существуют ли $b, c \in\mathbb{Z}_p, b\ne c$, такие, что $ab \equiv ac$? А если найду?

:D

Итак.

Вспомогательная лемма. Пусть $\mathbb{F} = \{ 1,2,\ldots,p-1 \}$, где $p$ -- простое. Тогда для произвольного $a \in \mathbb{F}$ и для каждого $b \in \mathbb{F}$ все числа $ab \pmod p$ различные.

Доказательство леммы.
От противного. Пусть $\exists b,c \in \mathbb{F}$, $b \ne c$ такие, что остатки от деления $ab$ и $ac$ на $p$ равны.
Тогда $ab-ac = a(b-c) \equiv 0 \pmod p$, т.е. число $a(b-c)$ делится нацело на $p$. При этом $1 \le a \le p-1$, следовательно $a$ не может делиться на $p$, и $1 \le b-c \le p-1$, следовательно $b-c$ также не может делиться на $p$.
Число $a(b-c)$ не может быть равно $p$, т.к. по условию $p$ -- простое, и значит $p$ не раскладывается на множители (в случае если какое-то из чисел $a,b-c$ равно единице, их произведение также не может быть равно $p$, т.к. они оба меньше $p$).
Таким образом, мы пришли к противоречию, и значит исходное предположение неверно. Следовательно, все числа $ab \pmod p$ различны.

SomePupil в сообщении #1131718 писал(а):
Порассуждайте, как можно доказать существование обратного элемента.

Пусть $\mathbb{F} = \{ 0,1,2,\ldots,p-1 \}$, где $p$ -- простое число.
Всего для произвольного ненулевого $a \in \mathbb{F}$ имеем $p-1$ различных чисел $ab \pmod p$ (потому что $b$ принимает значения от $1$ до $p-1$), при этом $1 \le ab \pmod p \le p-1$, значит среди этих чисел найдется единица. Это значит, что для $a$ существует обратный элемент.

-- 26.06.2016, 15:59 --

iifat в сообщении #1133006 писал(а):
Ну, попробуйте взять любую группу, любой элемент из неё и рассмотреть последовательность $1=a^0, a, a^2, a^3, \dots$ Начните да хоть с вычетов по простому модулю и посмотрите, что получится.

Вот этой подсказки я так и не понял. Не объясните, что Вы имели в виду? Почему надо взять именно группу?

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение26.06.2016, 16:41 
Заслуженный участник


16/02/13
4214
Владивосток
irod в сообщении #1134083 писал(а):
Не объясните, что Вы имели в виду?
А, забудьте. Вы уже и без неё, по-моему, справились.
irod в сообщении #1134083 писал(а):
Почему надо взять именно группу?
Ну, наверное, потому что поле — скрещение двух групп, одна с операцией умножение, другая со сложением, ну там ноль ещё особо выделен.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение26.06.2016, 17:31 
Аватара пользователя


07/01/15
1233
irod, круто!

irod писал(а):
Еще такой вопрос: задача 9 из этого листка ведь об отсутствии делителей нуля в поле, т.е. ее можно так перефразировать?

Да.

Выскажусь насчёт пунктов г и д. Вне алгебраического контекста эти задачи теряют своё значение, имхо. Разве что улучшится моторика рук (в этом отношении Lego полезнее). Решить эти задачи $-$ это как от огромного торта вишенку сожрать. Так что в этом случае лучше ограничиться знакомством с конечными полями. В частности, с полями Галуа (из Википедии, Кострикина ("Основные структуры алгебры") или из Винберга ("Курс Алгебры")).

(Оффтоп)

Эвариста Галуа жаль $-$ симпатичный был парень.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение29.06.2016, 10:51 


21/02/16
483
Спасибо всем за помощь!
SomePupil, последую Вашему совету и пропущу сейчас пункты г и д последней задачи.
Перехожу к листку 7 "Действительные числа, ч.2. Упорядоченное поле".
Задачи 1-10 не особо захватывающие и сложные, все интересное в этом листке, мне кажется, начинается с определения натуральных чисел. Тем не менее, я выложу все задачи которые сделал начиная с самой первой, вдруг вы мне подскажете какие-то более короткие и изящные доказательства по сравнению с моими собственными.

-- 29.06.2016, 10:55 --

1. Для любых $a,b$ верно ровно одно из трех утверждений: $a>b$, $a=b$ или $a<b$.

Доказательство.
Элемент $a + (-b) = a - b \in \mathbb{F}$ (по определению сложения в поле), а значит для него по аксиоме порядка 1 верно ровно одно из трех утверждений:
а) $a - b \in P \Leftrightarrow a > b$ (по определению).
б) $a - b = 0$.
Добавим $b$ к обеим частям равенства и воспользуемся аксиомами поля 1-4:
$(a - b) + b = 0 + b \Leftrightarrow a + (- b + b) = 0 + b \Leftrightarrow a + (b - b) = b + 0$
$\Leftrightarrow a + 0 = b + 0 \Leftrightarrow a = b$.
в) $-(a-b) \in P$.
Согласно зад. 4 листка 6, элемент противоположный сумме есть сумма противоположных элементов, т.е. $-(a - b) = -a + b = b - a \in P \Leftrightarrow a < b$ (по определению).

-- 29.06.2016, 11:02 --

2. Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
$a>b \Leftrightarrow a-b \in P$, $b>c \Leftrightarrow b-c \in P$ (по определению).
Следовательно, по аксиоме порядка 2, $(a-b)+(b-c) \in P$.
Применяя аксиомы поля 1-4, получим:
$(a-b)+(b-c) = ((a-b)+b)-c = (a+(-b+b))-c = $
$ = (a+(b-b))-c = (a+0)-c = a-c$, что значит $a>c$.

-- 29.06.2016, 11:10 --

3. Если $a>b$, то $a+c>b+c$ для любого $c$.

Доказательство.
От противного. Пусть $a>b$ и пусть $\exists c \in \mathbb{F}$ такое, что $a+c \ngtr b+c$, т.е. $(a+c)-(b+c) \not\in P$.
При этом
\begin{align*}
(a+c)-(b+c) & = & \text{(коммутативность сложения)} \\
(a+c)-(c+b) & = & \text{(листок 6 зад. 4)} \\
(a+c)+(-c-b) & = & \text{(ассоциативность сложения)} \\
(a+(c-c))-b & = & \text{(аксиома поля 4)} \\
(a+0)-b & = a - b. & \text{(аксиома поля 3)} 
\end{align*}
Но $a-b \in P$ по условию, следовательно, исходное предположение не верно, и $\forall c$: $a+c > b+c$.

-- 29.06.2016, 11:11 --

4. Если $a>b$ и $c>0$, то $ac>bc$.

Доказательство.
По условию, $a-b \in P$ и $c-0=c \in P$. Следовательно, по аксиоме порядка 2, $(a-b) \cdot c \in P$. В свою очередь, $(a-b) \cdot c = ac-bc$ по закону дистрибутивности. Значит, $ac>bc$.

-- 29.06.2016, 11:17 --

5. Утверждения $a>b$, $a-b>0$, $-a<-b$ и $b-a$ равносильны.

Доказательство.

Схема доказательства:
$a>b \overset{1}\Rightarrow a-b>0 \overset{2}\Rightarrow -a<-b \overset{3}\Rightarrow b-a<0 \overset{4}\Rightarrow a>b$.

1)
\begin{align*}
a>b & \Leftrightarrow & \text{(задача 3)} \\
a+(-b)>b+(-b) & \Leftrightarrow a-b>0. & \text{(аксиома поля 4)} 
\end{align*}

2)
\begin{align*}
a-b>0 & \Leftrightarrow & \text{(задача 3)} \\
(a-b)+(-a)>0+(-a) & \Leftrightarrow & \text{(коммутативность сложения)} \\
(-b+a)-a>-a+0 & \Leftrightarrow & \text{(ассоциативность сложения)} \\
-b+(a-a)>-a+0 & \Leftrightarrow & \text{(аксиома поля 4)} \\
-b+0>-a+0 & \Leftrightarrow -b>-a. & \text{(аксиома поля 3)} 
\end{align*}

3)
\begin{align*}
-a<-b & \Leftrightarrow & \text{(задача 3)} \\
-a+b<-b+b & \Leftrightarrow & \text{(коммутативность сложения)} \\
b-a<b-b & \Leftrightarrow b-a<0. & \text{(аксиома поля 4)} 
\end{align*}

4)
\begin{align*}
b-a<0 & \Leftrightarrow & \text{(задача 3)} \\
(b-a)+a<0+a & \Leftrightarrow & \text{(ассоциативность сложения)} \\
b+(-a+a)<0+a & \Leftrightarrow & \text{(коммутативность сложения)} \\
b+(a-a)<a+0 & \Leftrightarrow & \text{(аксиома поля 4)} \\
b+0<a+0 & \Leftrightarrow b<a. & \text{(аксиома поля 3)} 
\end{align*}

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение29.06.2016, 20:48 
Заслуженный участник


27/04/09
28128
irod в сообщении #1134660 писал(а):
Тем не менее, я выложу все задачи которые сделал начиная с самой первой, вдруг вы мне подскажете какие-то более короткие и изящные доказательства по сравнению с моими собственными.
1, 2, 4, 5 существенно негде сокращать.

3 можно доказать и не от противного: $a-b\in P$, но для любого $c$ верно$$a-b=a-b+0=a-b+c-c=\ldots=(a+c)-(b+c),$$ т. е. $(a+c)-(b+c)\in P$, и потому $a+c>b+c$.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение04.07.2016, 12:38 


21/02/16
483
arseniiv
спасибо.

Насчет 3: мне приходил на ум Ваш вариант, но мне показалось что он не лучше чем от противного, так что я его отбросил.
Еще меня интересовало, правильно ли доказал эквивалентность утверждений в 5, составив и замкнув цепочку. Но, видимо, тут все правильно :-)

Двигаюсь дальше.

-- 04.07.2016, 12:41 --

6. Если $a \ge b$ и $c \ge d$, то $a+c \ge b+d$.

Доказательство.
По условию возможны 3 варианта:
а) Если оба числа $a-b,c-d$ положительны, то их сумма положительна (по аксиоме порядка 2).
б) Если оба числа $a-b,c-d$ равны нулю, то их сумма равна нулю (по аксиоме поля 3).
в) Наконец, если одно из этих чисел положительно, а второе равно нулю, то их сумма равна положительному слагаемому (по аксиоме поля 3), и следовательно, положительна.
Таким образом, число $(a-b)+(c-d)$ либо положительно, либо равно нулю.
Применяя коммутативность и ассоциативность сложения, а также задачу 4 листка 6, получим:
$(a-b)+(c-d)=((a-b)+c)-d=(a+(-b+c))-d=(a+(c-b))-d=((a+c)-b)-d=(a+c)+(-b-d)=(a+c)-(b+d)$.
Положительность или равенство нулю числа $(a+c)-(b+d)$ и означает, что $a+c \ge b+d$.

 Профиль  
                  
 
 Re: Действительные числа (задачи из Давидовича)
Сообщение04.07.2016, 13:43 


21/02/16
483
7. Если $a>b$ и $c<0$, то $ac<bc$.

Доказательство.
Согласно зад.5, $c<0$ $\Leftrightarrow$ $-c>0$.
Согласно зад.4, $(a>b) \land (-c>0)$ $\Rightarrow$ $a(-c)>b(-c)$.
Согласно зад.10 листка 6 и аксиомам коммутативности и ассоциативности умножения,
$a(-c)=a((-1)\cdot c)=(a\cdot (-1))c=((-1)\cdot a)c=(-1)\cdot (ac)=-ac$.
Аналогично, $b(-c)=-bc$.
Следовательно, $a(-c)>b(-c)$ $\Leftrightarrow$ $-ac>-bc$, что в свою очередь, согласно зад.5, эквивалентно утверждению $ac<bc$.

-- 04.07.2016, 13:46 --

8. Доказать, что $1>0$.

Доказательство.
Согласно аксиоме поля 7, $1 \ne 0$. Значит, из трех вариантов, постулируемых аксиомой порядка 1, остаются два: либо $1 \in P$, либо $1 \in -P$.
Предположим, $1 \in -P$, т.е. $1<0$. Тогда, согласно задаче 7, для любого $a>0$ справедливо неравенство $a = a \cdot 1 < 1 \cdot 0 = 0$, а это абсурд. Следовательно, предположение неверно, и $1 \in P$, т.е. $1>0$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 94 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group