Munin, в том-то и дело, что знание фактов улетучивается буквально сразу же, если я их не использую
А не надо их "не использовать". Надо их использовать! Сразу же (интенсивно неделю-месяц), потом ещё через три месяца-полгода, потом ещё через год. Это общеизвестно (и так программы вузов построены).
В этом плане я весьма последователен: узнал какой-то факт - найди применение к интересующей задаче.
Нет, это поза капризной принцессы. Надо найти применение к любой стандартной учебной задаче. Тогда запомнится.
Если знания определения недостаточно - докажи лемму на основе определения, которую можно применить для решения, вот и всё.
Вот только это "вот и всё" в десятки раз более трудоёмко, чем прочитать учебник. Потому что какие леммы и в каком порядке доказывать - вы сами угадаете с 10-й - 100-й попытки. Если угадаете вообще (нечего переоценивать свою гениальность).
Для начала нужно понять, что значит описать спектр лапласиана на многообразии, действительно. Но для это быть может и не потребуется штудировать хотя бы одну книгу полностью, быть может достаточно одной главы этой книги.
Я примерно знаю, о чём речь, и говорю, что одной книги
недостаточно, требуется книги три:
- по ДУЧП;
- по функану;
- по дифференциальной геометрии.
По одной книге на каждое слово :-)
Во всех решаемых мною задачах я уловил нечто схожее: для ее решения нужно просто понять, о чем задача, задать себе нужные вопросы и уловить идею, спрятанную за этим всем. Ну а дальше дело за малым.
Значит, вы не уловили самого главного: это только в элементарных учебных задачах так. А в серьёзных задачах - дальше дело за очень большим. (И даже "уловить идею" бывает очень нетривиально.)
Для прочистки мозгов, подумайте вот о чём: как были получены те теоремы и факты, которые вы читаете в учебнике как данность, а не как упражнение? Их ведь тоже кто-то доказал, решая ту или иную задачу (иногда поставленную самому себе). А требуют они отнюдь не "малого".
Вот например, задача: обобщить теоремы Гаусса и Стокса. Она была решена (обобщённой теоремой Стокса), но по ходу дела потребовала формулировки нескольких новых понятий и целого нового математического аппарата. Заодно, были поставлены и новые вопросы.
Хватит решать стандартные задачи, достаточно. Жизнь кончается
Решение стандартных задач есть способ передачи знаний и наращивания мускулов. Без этого вы ничего серьёзного самостоятельно не решите. И когда "хватит" - это можете сказать не вы, а тренер. (И то: штангисты всю жизнь продолжают заниматься с гантелями, теннисисты - бегать по беговой дорожке, хотя их способности уже гораздо выше этого.)
Моя слабая память в отношении математики есть мое преимущество, а не недостаток
Способы самообмана и самоуспокоения поистине безграничны!
ибо для меня будет бесполезной тратой времени читать математическую литературу, как обычную книгу, ведь если я не буду тут же использовать на практике прочитанное, то всё равно весь материал забуду (ну или большую часть).
И для кого угодно будет тратой времени! Литературу надо читать не как книгу, а как учебник! Прорабатывать и прорешивать, с ручкой и бумагой. Если вы к выпускному курсу ещё этого не поняли, вы зря проучились предыдущие годы.
Кстати, к слову о Голливуде, вспомнилось... В фильме A Beautiful Mind Нэш пишет на доске перед студентами задачу:
Что скажете?