Меня меньше всего интересует можно ли алгебраическое уравнение решить в радикалах или ОДУ в квадратурах (и ради чего, спрашивается
) Меня интересуют разрешимость и свойства решения, а специалиста по прикладной математике—как его найти приближённо
Вот это очень интересный для меня вопрос, кстати.
Пусть есть ОДУ. Его решение - функция одной переменной. Вопрос: надо ли нам (допустим, физикам) знать его решение, выраженное в элементарных функциях, ежели таковое есть?
Оставим в стороне устойчивость, бифуркации и т.д. - я в этих темах "плаваю" и боюсь наговорить глупостей. Что может быть честному физику пролетарского происхождения интересно в функции одной переменной?
1. Алгоритм, для каждой рациональной точки из области определения вычисляющий значение функции с нужной точностью.
Я говорю о рациональных точках для простоты: в компьютерной памяти конечное число регистров, так что всякое иррациональное число на практике будет оборвано на некотором знаке после запятой и тем самым заменено на рациональное.
2. Точные грани функции.
3. Периоды функции.
4. Нули, точки экстремума, точки перегиба.
5. Что еще я забыл?
6. Возможность выяснить пп. 1-5 для производной этой функции.
Для элементарных функций и известных спецфункций техника выяснения пп. 1-6 хорошо разработана. Для ОДУ в общем виде, по крайней мере, известен п. 1 - это просто алгоритм численного решения ОДУ в данной точке. А вот насколько развита техника выяснения по виду ОДУ пп. 2-6? Если так же хорошо, как и для элементарных функций, то действительно ни к чему пытаться выяснить, можно ли слепить решение из всяких синусов и логарифмов. Если же нет, то...