2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 8, 9, 10, 11, 12
 
 Re: Программа студентов
Сообщение15.10.2015, 23:57 
Заслуженный участник
Аватара пользователя


30/01/06
72407
ukb768 в сообщении #1063228 писал(а):
Почему?

Потому что юмор такой у нашего уважаемого Red_Herring.

    "Не только кору головного мозга, но и самую его, так сказать, древесину..."

 Профиль  
                  
 
 Re: Программа студентов
Сообщение16.10.2015, 00:03 
Заслуженный участник
Аватара пользователя


31/01/14
11523
Hogtown
ukb768 в сообщении #1063228 писал(а):
"Ядро современной математики" - алгебра, алгебраическая топология и дифференциальная геометрия с анализом.


Ядро современной математики—это прежде всего анализ в широком смысле слова (IMHO).

-- 15.10.2015, 17:05 --

Munin в сообщении #1063231 писал(а):
Не только кору головного мозга, но и самую его, так сказать, древесину..."


Вообще-то я имел в виду Землю: core-mantle-crust

 Профиль  
                  
 
 Re: Программа студентов
Сообщение16.10.2015, 00:31 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Ещё бы, древесная кора - это bark.

 Профиль  
                  
 
 Re: Программа студентов
Сообщение16.10.2015, 00:31 
Заслуженный участник
Аватара пользователя


08/11/11
5940
Red_Herring в сообщении #1063232 писал(а):
Ядро современной математики—это прежде всего анализ в широком смысле слова (IMHO).


Ну не знаю, я думаю, что если опросить великих математиков, то довольно существенная часть скажет, что крупнейшим достижением математики 20 века является схемная алгебраическая геометрия Гротендика; анализа там более-менее нет (хотя теорию, в принципе, можно развивать над кольцом $C^{\infty}(M)$ и получить существенную часть анализа на многообразиях).

Кроме того, есть такие вещи, как

Гипотезы Вейля, уже много раз здесь упоминавшиеся.
Алгебраическая К-теория.
Мотивы Воеводского и гипотеза Блоха-Като.
Гомотопические группы сфер (включая недавние результаты).
Доказательство Уайлза, опять же.
Классификация конечных простых групп.

Ну это то, про что я как-то слышал; и, я, скорее всего, про большую часть достижений не знаю, потому что занимаюсь анализом :)

 Профиль  
                  
 
 Re: Программа студентов
Сообщение16.10.2015, 01:56 


12/10/15
11
Red_Herring, дифференциальную геометрию тоже имеете в виду(геометрический анализ и иже с ними)?
Так-то анализ многогранен, но большие пересечения с другими областями имеет именно анализ на многообразиях(а также его частные случаи и обобщения ). Тот же гармонический анализ(современный) намного уже, чем та же топология( и алгебраическая, и геометрическая, причём берутся они по отдельности, естественно ), хотя и активно развивается.

 Профиль  
                  
 
 Re: Программа студентов
Сообщение16.10.2015, 02:43 
Заслуженный участник
Аватара пользователя


31/01/14
11523
Hogtown
Разумеется мой анализ включает дифференциальную геометрию во всех ее проявлениях в т.ч. Риманову и симплектическую

 Профиль  
                  
 
 Re: Программа студентов
Сообщение22.10.2015, 16:21 
Заслуженный участник
Аватара пользователя


20/08/14
8950
Red_Herring в сообщении #1062937 писал(а):
Меня меньше всего интересует можно ли алгебраическое уравнение решить в радикалах или ОДУ в квадратурах (и ради чего, спрашивается
) Меня интересуют разрешимость и свойства решения, а специалиста по прикладной математике—как его найти приближённо

Вот это очень интересный для меня вопрос, кстати.
Пусть есть ОДУ. Его решение - функция одной переменной. Вопрос: надо ли нам (допустим, физикам) знать его решение, выраженное в элементарных функциях, ежели таковое есть?
Оставим в стороне устойчивость, бифуркации и т.д. - я в этих темах "плаваю" и боюсь наговорить глупостей. Что может быть честному физику пролетарского происхождения интересно в функции одной переменной?
1. Алгоритм, для каждой рациональной точки из области определения вычисляющий значение функции с нужной точностью.
Я говорю о рациональных точках для простоты: в компьютерной памяти конечное число регистров, так что всякое иррациональное число на практике будет оборвано на некотором знаке после запятой и тем самым заменено на рациональное.
2. Точные грани функции.
3. Периоды функции.
4. Нули, точки экстремума, точки перегиба.
5. Что еще я забыл?
6. Возможность выяснить пп. 1-5 для производной этой функции.

Для элементарных функций и известных спецфункций техника выяснения пп. 1-6 хорошо разработана. Для ОДУ в общем виде, по крайней мере, известен п. 1 - это просто алгоритм численного решения ОДУ в данной точке. А вот насколько развита техника выяснения по виду ОДУ пп. 2-6? Если так же хорошо, как и для элементарных функций, то действительно ни к чему пытаться выяснить, можно ли слепить решение из всяких синусов и логарифмов. Если же нет, то...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 172 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Alex-Yu, HungryLion


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group