2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6 ... 8  След.
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:00 
Аватара пользователя


08/08/14

991
Москва
а какой ответ на 7.1?

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:08 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Munin в сообщении #1058525 писал(а):
Возможно, ваши мысли направлены куда-нибудь в сторону нестандартного анализа?

Нет-нет. С использованием термина "вероятность" я уверен, что моё понимание совпадает с общепринятым. Эта ветка разговора уже была не относительно задачи (там я уже признал, что был неправ, и извинился), а относительно моего понимания слова "шансы" (здесь я просто пытался понять причину своего сбоя).

Для меня "шансы" не то же, что "вероятность": я искренне считаю, что шансы у невероятного события не есть то же самое, что шансы невозможного события (там шанс есть, а здесь нет), хотя никаких сомнений в плане равенства вероятностей у меня нет. И, что хуже, даже для возможных событий с нулевой вероятностью я предполагал разницу в шансах. Вся эта путаница довела меня до раздражения :)

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:11 
Заслуженный участник
Аватара пользователя


20/08/14
9180
levtsn в сообщении #1058535 писал(а):
а какой ответ на 7.1?

Полный ответ на седьмую задачу уже давался.
Red_Herring в сообщении #1058444 писал(а):
Т.е. распределение непрерывное, а следовательно у любого не более чем счётного множества вероятность 0, а у его дополнения 1.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:22 
Заслуженный участник


27/04/09
28128
grizzly в сообщении #1058536 писал(а):
И, что хуже, даже для возможных событий с нулевой вероятностью я предполагал разницу в шансах. Вся эта путаница довела меня до раздражения :)
Ну так это если плотность определена, можно вас понять. А если в одной точке $a$ с нулевой вероятностью $\{a\}$ плотность определена, а в другой точке с нулевой вероятностью — нет? Как сравнить? :-)

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:28 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Anton_Peplov в сообщении #1058530 писал(а):
Если пункты 1) и 2) не подходят под формулировку "с полтычка", я готов признать, что погорячился, и снять эти задачи.

Для вас, может, и подходят. Для меня - нет. Я не критиковал ваши задачи, я всего лишь отозвался о своих способностях.

Nemiroff в сообщении #1058533 писал(а):
какие-то аксиомы надо помнить

Ну не знаю, вот аксиомы группы я почему-то помню. И поля, если напрягусь. И даже векторного пространства. Но вот большинство вещей я знаю неаксиоматически.

Nemiroff в сообщении #1058533 писал(а):
Это не процесс решения, это запись ответа. В процессе решения люди так не думают.

Для меня это верно, но я не знаю, может, кто-то именно так и думает.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 19:59 
Заслуженный участник
Аватара пользователя


20/08/14
9180
Nemiroff в сообщении #1058533 писал(а):
2. какие-то аксиомы надо помнить, а ещё свойства, а ещё считать в уме — а понимать что надо? википедии хватит без всяких пониманий.


Эта критика принимается.
Nemiroff в сообщении #1058533 писал(а):
3. три определения, причем совершенно неясен смысл их названий и так же неясно наличие/отсутсвие связи между ними; обычно если уж одно и то же слово употребляется в названии термина, то прослеживается связь между понятиями, опять же неясно, что именно нужно понимать, а к чему привести пример

Интуитивный смысл понятия "локальности" - важно, как функция ведет себя в точке или в малой окрестности точки, и чихать на то, как она себя ведет во всей остальной области определения. Выполнение свойства для всей области определения складывается из его выполнения во всех точках (в каком-то смысле можно сказать, что свойство "аддитивно"). Это так для непрерывности и дифференцируемости, но совершенно не так для интегрируемости и ограниченности (последние два свойства вообще не определены в точке, а если определить их выполнение в точке как выполнение на одноточечном множестве, то они будут выполняться в любой точке, но из этого не последует их выполнение на множестве, состоящем из этих точек). Мне различие между "локальными" и "нелокальными" свойствами представляется глубоким и важным именно в смысле понимания.
"Железная локальность" демонстрирует как будто следующий шаг. Дело в том, что интуитивно кажется (мне, по крайней мере), что если свойство выполняется в точке, то оно выполняется и в достаточно малой окрестности этой точки. А это не так ни для непрерывности, ни для дифференцируемости. И если человек это знает, он понимает природу непрерывности и дифференцируемости лучше, чем если он этого не знает.
"Ну вообще локальные" свойства - иллюстрация противоположной иллюзии. Можно решить, что раз уж какая-нибудь непрерывность такая локальная, то непрерывность функции в точке $x_0$ и зависит только от значения функции в точке $x_0$. Это означало бы, что если $f(x)$ непрерывна в т. $x_0$ и $g(x_0) = f(x_0)$, то и $g(x)$ непрерывна в т. $x_0$. Но это очевидно не так, и контрпример легко построить. "Ну вообще локальное" свойство является по сути свойством числа (значения функции в данной точке), а не функции. В то время как непрерывность и дифференцируемость в точке являются все-таки свойством функции, и их выполнение/невыполнение в точке $x_0$ зависит от поведения функции в целом континууме других точек. То есть получается так: непрерывность функции в точке $x_0$ еще не гарантирует непрерывности ее ни в какой окрестности этой точки (свойство железно локальное!), но зависит от поведения функции в этой окрестности (свойство не "ну вообще локальное"). Это тонкая грань, и ее понимание, по-моему, связано с пониманием матанализа вообще.

Nemiroff в сообщении #1058533 писал(а):
7. опять же: что нужно понимать? я встречал людей, которые просто помнят "ну там рациональные, там значит $0$, а если нет, то там $1$"; на вопрос "где там" и "что именно $0$" получаешь молчание — задачка не позволяет оценить какое-то понимание, это просто знание/незнание факта
.
А я встречал много-много людей, которые в ответ на этот вопрос хлопают глазами. Конечно, пример с рациональными/иррациональными числами достаточно истрепан, и встречаются люди, которые его видели и запомнили. Но, как Вы сами правильно заметили, чтобы отсеять таких мнемонистов, достаточно задать вопрос "почему?".

Nemiroff в сообщении #1058533 писал(а):
1. 4. 5. это стандартные задачи из соответствующих курсов, не знаю, насколько они способствуют "пониманию"

Да, они стандартные. Но пониманию они, на мой взгляд, очень даже способствуют. А если на Ваш не способствуют, значит, мы с Вами по-разному понимаем слово "понимание". И давайте не будем пытаться его определить, это не удалось философам за две с половиной тысячи лет работы, и у нас тоже вряд ли получится.

Nemiroff в сообщении #1058533 писал(а):
вот 6. мне нравится

Я рад.


Nemiroff в сообщении #1058533 писал(а):
Это не процесс решения, это запись ответа. В процессе решения люди так не думают.

В процессе решения люди думают так: "Доказать не получается, попробую-ка я опровергнуть. Поищем контрпримеры. Ясно, что если одно из слагаемых в левой части уже больше правой, то и от возведения в квадрат ничего не изменится. Поищем-ка примеры, когда оба слагаемых в левой части сами по себе меньше правой, но в сумме больше или равны. О! Нашел!".

Вы были столь любезны, что выполнили подробный критический разбор предложенных задач. Было бы еще более очаровательно, если бы Вы взамен предложили свои задачи.

-- 02.10.2015, 20:00 --

Munin в сообщении #1058555 писал(а):
Я не критиковал ваши задачи, я всего лишь отозвался о своих способностях.

Не думаю (и вряд ли когда-нибудь начну), что мои способности больше Ваших. Это слишком уж экстравагантное предположение.
Скорее всего, тут дело в ретроспективном искажении: задача, которую уже решил, кажется легче, чем есть на самом деле.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 22:20 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Anton_Peplov в сообщении #1058572 писал(а):
Не думаю (и вряд ли когда-нибудь начну), что мои способности больше Ваших. Это слишком уж экстравагантное предположение.

Ну, я такого и не предполагал :-) Я счёл, что в данном месте профиль ваших способностей выше профиля моих. В других местах, может быть, иначе. Ну и например, несомненно, вы куда эрудированней меня в гуманитарных областях.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 22:43 
Заслуженный участник
Аватара пользователя


20/08/14
9180
Ага, за счет невежества в точных науках:)

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 22:56 
Заслуженный участник
Аватара пользователя


28/07/09
1238
Anton_Peplov в сообщении #1058523 писал(а):
Legioner93 в сообщении #1058492 писал(а):
Достаточное условие: Выпуклость вверх

Нагуглил, что такое выпуклая вверх функция (кстати, в каком учебнике про это по-человечески почитать можно?). Сказано, что функция выпукла вверх, если для любых $x_1, x_2$ выполняется $f(\frac{x_1 + x_2}{2})\geqslant \frac{f(x_1) + f(x_2)}{2}$. Что-то тут не то. Нам нужно, чтобы функция $f(x)$ сохраняла неравенство треугольника, то есть если $x_1 + x_2 \geqslant x_3$, то $f(x_1) + f(x_2) \geqslant f(x_3)$. Для этого достаточно, чтобы, во-первых, если $x_1 + x_2 \geqslant x_3$, то $f(x_1 + x_2) \geqslant f(x_3)$ (такому условию удовлетворяет любая неубывающая функция), а во-вторых, $f(x_1) + f(x_2) \geqslant f(x_1 + x_2)$, а не наоборот. Так что тут скорее интересна функция, выпуклая вниз, для которой $f(\frac{x_1 + x_2}{2})\leqslant\frac{f(x_1) + f(x_2)}{2}$ (если я нигде не ошибся со знаком в неравенствах). И потом, вот этот знаменатель $2$ меня смущает. Я не вижу, как из $f(\frac{x_1 + x_2}{2})\leqslant\frac{f(x_1) + f(x_2)}{2}$ следует, что $f(x_1 + x_2)\leqslant f(x_1) + f(x_2)$. Скорее всего, никак, в аргумент функции никаким законным преобразованием не залезешь.

Как можно иметь (около)математическое образование и не знать, что такое выпуклая функция??? :shock: :shock:
Это ж ещё школе проходят.

Честно говоря, затруднительно было разбираться в полёте вашего сознания, давайте с чистого листа:
Что вам дано (какие равенства и неравенства), и что вы хотите вывести (какие неравенства)?

-- Пт окт 02, 2015 23:02:09 --

Nemiroff в сообщении #1058533 писал(а):
Anton_Peplov в сообщении #1058530
писал(а):
)$\rho^2(x,y)$ - не обязательно метрика. Контрпример: пусть $\rho(x,y) = \rho(y,z) = 1$ и $\rho(x,z) = 2$. Тогда $\rho^2(x,y)$ не сохраняет неравенство треугольника, ибо $\rho^2(x,y) + \rho^2(y,z) < \rho^2(x,z)$. Это не процесс решения, это запись ответа. В процессе решения люди так не думают.

Протестую! Контрпример является и ответом и решением, ничего более Anton_Peplov писать не должен. Кр. - сестр. тал.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 23:22 
Заслуженный участник
Аватара пользователя


20/08/14
9180
Legioner93 в сообщении #1058626 писал(а):
Как можно иметь (около)математическое образование и не знать, что такое выпуклая функция??? :shock: :shock:
Это ж ещё школе проходят.

Не знаю, в какой школе Вы учились. В школе, в которой учился я, о выпуклых функциях не упоминали.
Кстати, никакого (около)математического образования у меня нет. Я самоучка.

Legioner93 в сообщении #1058626 писал(а):
давайте с чистого листа:
Что вам дано (какие равенства и неравенства), и что вы хотите вывести (какие неравенства)?


Давайте. Мы имеем метрику $\rho(x,y)$ и хотим найти такую функцию одной переменной $f(t)$, чтобы $f(\rho(x,y))$ было метрикой.
Для этого функция $f(t)$ должна удовлетворять очевидным условиям, а именно:
1)$f(0) = 0$;
2)для любого $t>0$ $f(t)>0$;
3)для любых неотрицательных $t_1, t_2, t_3$ если $t_1 + t_2 \geqslant t_3$, то $f(t_1) + f(t_2) \geqslant f(t_3)$.
Теперь скажите мне, пожалуйста, что такое выпуклая вверх функция (возможно, я что-то не то нагуглил, Интернет такой Интернет), чтобы я смог подумать, верны ли для нее вышеприведенные условия.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 23:35 
Заслуженный участник


27/04/09
28128

(Оффтоп)

Насколько я на этом форуме как-то читал, иногда выпуклые вверх-вниз функции называются наоборот. Или это было написано о выпуклых и вогнутых функциях, но что-то не помню, чтобы видел словоупотребление «вогнутая функция». Если всё так, тогда могла получиться путаница из-за этого. В конце концов, подграфик ни чем не лучше надграфика, а с выпуклостью именно этих множеств, понимаемой в обычном аффинном смысле, связана выпуклость функции.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение02.10.2015, 23:41 
Заслуженный участник
Аватара пользователя


31/01/14
11617
Hogtown
arseniiv в сообщении #1058643 писал(а):
В конце концов, подграфик ни чем не лучше надграфика

В Великобритании:
Подграфик – Виконтик
Надграфик - Маркизик

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение03.10.2015, 00:17 
Заслуженный участник
Аватара пользователя


01/03/06
13626
Москва
Anton_Peplov в сообщении #1058638 писал(а):
Давайте. Мы имеем метрику $\rho(x,y)$ и хотим найти такую функцию одной переменной $f(t)$, чтобы $f(\rho(x,y))$ было метрикой.
Для этого функция $f(t)$ должна удовлетворять очевидным условиям, а именно:
1)$f(0) = 0$;
2)для любого $t>0$ $f(t)>0$;
3)для любых неотрицательных $t_1, t_2, t_3$ если $t_1 + t_2 \geqslant t_3$, то $f(t_1) + f(t_2) \geqslant f(t_3)$.

Вот и нет. Например, для дискретной метрики (это когда расстояние между различными точками всегда равно 1 ), в п.2 достаточно требовать, чтобы $f(1)>0$, а п.3 вообще не нужно. :D

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение03.10.2015, 00:21 
Заслуженный участник
Аватара пользователя


28/07/09
1238
Brukvalub
Вы не поняли постановку задачи. Идёт разговор о классе функций, оставляющих любую метрику метрикой.

-- Сб окт 03, 2015 00:25:51 --

Anton_Peplov в сообщении #1058638 писал(а):
Давайте. Мы имеем метрику $\rho(x,y)$ и хотим найти такую функцию одной переменной $f(t)$, чтобы $f(\rho(x,y))$ было метрикой.
Для этого функция $f(t)$ должна удовлетворять очевидным условиям, а именно:
1)$f(0) = 0$;
2)для любого $t>0$ $f(t)>0$;
3)для любых неотрицательных $t_1, t_2, t_3$ если $t_1 + t_2 \geqslant t_3$, то $f(t_1) + f(t_2) \geqslant f(t_3)$.
Теперь скажите мне, пожалуйста, что такое выпуклая вверх функция (возможно, я что-то не то нагуглил, Интернет такой Интернет), чтобы я смог подумать, верны ли для нее вышеприведенные условия.

$f(tx + (1-t)y) \geq tf(x) + (1-t)f(y)$ для любых $t \in [0, 1]$.

-- Сб окт 03, 2015 00:30:38 --

Вот корень - как раз выпуклый вверх. А парабола - нет, она наоборот.

 Профиль  
                  
 
 Re: Задачи на понимание
Сообщение03.10.2015, 00:46 
Заслуженный участник
Аватара пользователя


20/08/14
9180
Так. Это такая функция, что для любого $\alpha\geqslant 0$ множество всех $x$ таких, что $f(x) \leqslant \alpha$, выпукло. То есть, поскольку речь о функции одной действительной переменной, линейно связно.
Когда-то очень давно, когда деревья были большими, я читал об этих вещах в учебнике. Но с тех пор Земля не раз обошла вокруг Солнца.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 113 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 8  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group