2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 39, 40, 41, 42, 43, 44, 45 ... 47  След.
 
 Re: Модифицировать программу (практическая помощь)
Сообщение29.08.2015, 20:06 


10/07/15
286
Чуть больше информации и интересней
Код:
table[Length(Select[{0,6,12,246,252}, PrimeQ[(n*9699690+3297661)+#]&]),{n,400000000,400001000}]

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение29.08.2015, 20:11 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Begemot82 в сообщении #1049094 писал(а):
Нашлось решение с 10 простыми
Код:
3881507607551941
{0, 6, 12, 30, 42, 120, 156, 180, 246, 252}

Действительно, вполне себе хороший кортеж, симметричный :roll:
Код:
3881507607551941, 3881507607551947, 3881507607551953, 3881507607551971, 3881507607551983, 3881507607552013*, 3881507607552031*, 3881507607552037*, 3881507607552061, 3881507607552067*, 3881507607552073*, 3881507607552097, 3881507607552103*, 3881507607552121, 3881507607552151*, 3881507607552163*, 3881507607552181*, 3881507607552187, 3881507607552193

Ну, всего 9 элементов не простые числа, а кто их сразу разберёт - простые они или не простые :D (я их звёздочкой пометила).
Так решение для КПППЧ 12, наверное, можно и полное найти, если поиграться часок.

-- Сб авг 29, 2015 21:16:32 --

Begemot82 в сообщении #1049145 писал(а):
Чуть больше информации и интересней
Код:
table[Length(Select[{0,6,12,246,252}, PrimeQ[(n*9699690+3297661)+#]&]),{n,400000000,400001000}]

Эх, а чего это тут?
Код:
{0, 1, 2, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 2, 0, 1, 0, 1, 2, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 1, 2, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 1, 2, 0, 1, 0, 3, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 2, 2, 1, 2, 1, 0, 1, 2, 0, 2, 0, 0, 2, 2, 2, 1, 0, 3, 0, 1, 1, 1, 1, 0, 1, 1, 3, 3, 2, 1, 0, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 1, 2, 1, 0, 2, 1, 2, 2, 1, 0, 0, 0, 1, 1, 2, 3, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 3, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 0, 3, 0, 2, 2, 1, 1, 1, 0, 2, 1, 0, 1, 0, 0, 0, 3, 0, 2, 3, 1, 3, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 0, 2, 2, 0, 2, 3, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, ...}

Может, расшифруете? :-)
Попробую угадать: это выводятся зашифрованная информация о тех самых 5 элементах, проверка которых задана.
Вот только не пойму, как шифруется.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение29.08.2015, 20:22 


10/07/15
286
Количество простых среди $0,6,12,246,252$. Интересует 5. Она тут есть.

-- 29.08.2015, 20:24 --

Nataly-Mak в сообщении #1049147 писал(а):
кто их сразу разберёт - простые они или не простые
Если были простыми, то их было не 10, а больше

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение29.08.2015, 20:26 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Ага, ну я почти угадала :D (см. предыдущий пост)

-- Сб авг 29, 2015 21:29:00 --

Begemot82 в сообщении #1049149 писал(а):
Если были простыми, то их было не 10, а больше

Ну, это-то понятно. Но вот если просто кортеж записать, то сразу кто скажет, какие числа простые, а какие нет :-)
Конечно, в этом примере (в отличие от некоторых :wink: ) всё чётко проверяется.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение02.09.2015, 06:25 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Нашла в рабочем файле ещё потенциальные паттерны с минимальным диаметром 432 для КПППЧ длины 27, их моя программа нашла 3 штуки:
Код:
0  6  12  30  42  66  72  90  126  132  156  192  210  216  222  240  276  300  306  342  360  366  390  402  420  426  432
0  6  12  30  42  72  90  126  132  150  156  192  210  216  222  240  276  282  300  306  342  360  390  402  420  426  432
0  6  12  36  90  96  102  120  132  162  180  186  210  216  222  246  252  270  300  312  330  336  342  396  420  426  432

Для бОльших длин уже не искала паттерны.

-- Ср сен 02, 2015 07:27:54 --

Тем временем преодолела ещё один интервал длиной 100 триллионов. По-прежнему ничего интересного не нашла.
Мало интересные 16-ки и 18-ки. Даже ни одного квадратика из 16-ок не составилось :cry:

-- Ср сен 02, 2015 07:47:48 --

Для потенциального паттерна КПППЧ длины 19
Код:
0  6  12  30  42  72  90  96  120  126  132  156  162  180  210  222  240  246  252

я приводила одну формулу:
Код:
ChineseRemainder[{1,1,1,3,4,3,1,2},{2,3,5,7,11,13,17,19}]
3297661+9699690n

Их будет много, вот ещё несколько (привожу их вместе с соответствующей командой в Wolfram Alpha, чтобы можно было проверить остатки; остатки вручную считала, вполне могла ошибиться):
Код:
ChineseRemainder[{1,1,1,3,4,3,1,3},{2,3,5,7,11,13,17,19}]
2787151+9699690n
ChineseRemainder[{1,1,1,3,4,3,1,11},{2,3,5,7,11,13,17,19}]
8402761+9699690n
ChineseRemainder[{1,1,1,3,4,3,1,12},{2,3,5,7,11,13,17,19}]
7892251+9699690n
ChineseRemainder[{1,1,1,3,4,3,1,16},{2,3,5,7,11,13,17,19}]
5850211+9699690n
ChineseRemainder[{1,1,1,3,4,3,1,17},{2,3,5,7,11,13,17,19}]
5339701+9699690n

Можно продолжить. Главное - не напутать с остатками, чтобы формулы получились правильные.
Если искать кортеж сразу по всем формулам, шансы здорово повысятся, как мне кажется.

-- Ср сен 02, 2015 08:16:12 --

Ищу по второй формуле
$2787151+9699690n$

Команда
Код:
Select[Range[400000000,400050000],PrimeQ[(#*9699690+2787151+246)]&&PrimeQ[(#*9699690+2787151+252)]&& PrimeQ[(#*9699690+2787151+12)]&& PrimeQ[(#*9699690+2787151+6)]&& PrimeQ[(#*9699690+2787151)]&]

выдаёт решения:
Код:
{400000995, 400003386, 400005506, 400009053, 400014421, 400022091, 400022891, 400026929, 400027297, 400037882, 400047953}

Последнее из этих решений даёт кортеж с 10 простыми числами:
Код:
Select[Range[0,252],PrimeQ[(400047953*9699690+2787151)+#]&]
{0, 6, 12, 90, 96, 100, 132, 136, 156, 180, 246, 252}

Begemot82
я тоже нашла с 10 простыми.
Больше можете? :wink:

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение04.09.2015, 09:54 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Решила проверить на простеньком примере с известным решением, возможно ли в принципе найти решение в онлайн-WA.
Взяла этот паттерн для КПППЧ длины 7:
Код:
0, 12, 18, 30, 42, 48, 60

Нашла все возможные формулы для кортежа (если не ошиблась - вычисления остатков, конечно, вручную):
Код:
ChineseRemainder[{1,1,1,4},{2,3,5,7}]
151+210n
ChineseRemainder[{1,1,1,6},{2,3,5,7}]
181+210n
ChineseRemainder[{1,1,4,4},{2,3,5,7}]
109+210n
ChineseRemainder[{1,1,4,6},{2,3,5,7}]
139+210n
ChineseRemainder[{1,2,1,4},{2,3,5,7}]
11+210n
ChineseRemainder[{1,2,1,6},{2,3,5,7}]
41+210n
ChineseRemainder[{1,2,4,4},{2,3,5,7}]
179+210n
ChineseRemainder[{1,2,4,6},{2,3,5,7}]
209+210n

Решение мне известно (я нашла его по своей программе):
Код:
12003179: 0, 12, 18, 30, 42, 48, 60

Очевидно, что это решение получается по последней формуле при $n=57157$.
Ввожу команду в WA:
Код:
Select[Range[57000,57500],PrimeQ[(#*210+209+60)]&&PrimeQ[(#*210+209+48)]&& PrimeQ[(#*210+209+42)]&& PrimeQ[(#*210+209+12)]&& PrimeQ[(#*210+209)]&]

Выдаётся решение:
{57157}
Проверяю:
Код:
Select[Range[0,60],PrimeQ[(57157*210+209)+#]&]
{0, 12, 18, 30, 42, 48, 60}

Всё точно!

-- Пт сен 04, 2015 11:19:53 --

Ищу по другой формуле.
Вот это решение:
Код:
Select[Range[0,60],PrimeQ[(94289*210+11)+#]&]
{0, 12, 18, 20, 26, 30, 42, 48, 56, 60}

весьма напоминает упоминание Jarek о таких решениях, в которых есть лишние простые числа.
Сравните решение с заданным паттерном:
Код:
0, 12, 18, 30, 42, 48, 60

То есть фактически мы получили симметричный кортеж из простых чисел, соответствующий заданному паттерну, но! не из последовательных простых чисел.

-- Пт сен 04, 2015 11:46:03 --

А вот три правильных решения - по формуле $11+210n$
Код:
Select[Range[0,60],PrimeQ[(125496*210+11)+#]&]
{0, 12, 18, 30, 42, 48, 60}
Select[Range[0,60],PrimeQ[(434475*210+11)+#]&]
{0, 12, 18, 30, 42, 48, 60}
Select[Range[0,60],PrimeQ[(512146*210+11)+#]&]
{0, 12, 18, 30, 42, 48, 60}

Таким образом, эксперимент показал, что всё замечательно находится.
Всё дело в больших объёмах вычислений для кортежей бОльших длин, которые невозможно выполнить в режиме онлайн с помощью разовых команд.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 15:44 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Nataly-Mak в сообщении #1047082 писал(а):
Недавно отправила Carlos Rivera проект головоломки на эту тему. Он обещал через 2-3 недели опубликовать.

Carlos Rivera сегодня опубликовал проблему:

Problem 62. Symmetric k-tuples of consecutive primes
http://www.primepuzzles.net/problems/prob_062.htm

Begemot82
вы жаждали увидеть полное описание задачи. Пожалуйста, можете увидеть.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 19:31 


10/07/15
286
Противоречия остались. Решение для $n=3$ есть только в OEIS ( $3$ $5$ $7$ ), но не упоминается в описании. Минимальное решение из OEIS для $n=6$ не является минимальным по "Макаровой" . Почему проигнорировано решение ( $ 5, 7, 11, 13, 17, 19 $ ) ? "Его нет википедии" и не прошибаемое "а я так захотела".

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 19:54 
Заслуженный участник


20/08/14
11966
Россия, Москва
Если что, я заслал туда на почту минимальные решения для n=11,12,13,14,16.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 21:47 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Begemot82
Вы это видели?
Цитата:
1. Find solutions with a minimal diameter and a minimal value of p for 10 < k < 17, k = 18, 20, 22, 24.

Что надо искать - вам понятно? Определения понятны?
Причём здесь $k=3$, $k=6$?
Эти решения давно нашли и они не составляют ни для кого проблемы.
Автор сайта Carlos Rivera не усмотрел никаких противоречий в моём описании, а он грамотный математик.
Ах, не привела решение для $k=3$. Ну, сами найдёте :mrgreen:
[Кстати, здесь я его привела.]
Если вы усмотрели очень важные противоречия в описании, напишите автору сайта ваши претензии.
[напишите, к примеру, что вы нашли решение для $k=3$, а у автора это решение не приведено. Carlos, наверное, с вами согласится и добавит это решение в описание с вашим именем :mrgreen: ]
Цитата:
Минимальное решение из OEIS для $n=6$ не является минимальным по "Макаровой"

В сто первый раз повторяю: решение из OEIS не является минимальным по Википедии.

Да, я захотела всё определить по Википедии. Моя головоломка - как захотела, так и определила (и это не противоречит общепринятому определению, данному в Википедии).
Вот maxal, например, определил последовательность k-туплетов из последовательных простых чисел, которые (k-туплеты) не удовлетворяют условиям по остаткам.
И приводит такой не симметричный 26-туплет:
Код:
[13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127]

Ну, определил и определил. На здоровье.
А другие исследователи такой 26-туплет не рассматривают вообще.

-- Сб сен 05, 2015 23:00:21 --

Begemot82 в сообщении #1050725 писал(а):
Противоречия остались. Решение для $n=3$ есть только в OEIS ( $3$ $5$ $7$ ),

Да, действительно, противоречия остались, но не у меня.
Вот последовательность минимальных диаметров кортежей из последовательных простых чисел из той же OEIS - A008407
Код:
0, 2, 6, 8, 12, 16, 20, 26, 30, 32, 36, 42, 48, 50, 56, 60, 66, 70, 76, 80, 84, 90, 94, 100, 110, 114, 120, 126, 130, 136, 140, 146, 152, 156, 158, 162, 168, 176, 182, 186, 188, 196, 200, 210, 212, 216, 226, 236, 240, 246, 252, 254, 264, 270, 272, 278

Вы видите, какой здесь указан минимальный диаметр для 3-tuplet?
Он равен 6. Видите, 6 а не 4 :!:
Так что, этот 3-tuplet $(3,5,7)$ здесь не рассматривают.
А почему не рассматривают? Вы знаете?
А потому не рассматривают, что в этой последовательности требуется выполнение условия по остаткам.
А зачем оно здесь требуется?
Так автор захотел.
Всё. Точка.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 23:05 


10/07/15
286
Nataly-Mak в сообщении #1050750 писал(а):
А потому не рассматривают, что в этой последовательности требуется выполнение условия по остаткам.
В данном случае оно появляется как требование при поиске больших простых чисел и повторяющих последовательностей. И 3-tuplet $(3,5,7)$ не расматривается, потомучто он не повторяется. Для поиска минимальных диаметров все сводится к тривиальным случаям ( первые k простых ) и к задаче пропадает всякий интерес. Если появляется условие симметричности при поиске минимальных диаметров требование по остаткам излишне, когда можно легко обойтись без него, но продолжается песенка " я так хочу "
Добавлено.
Каждый ищет свое - maxal минимальные и ему не нужны "кандалы", другие - большие и повторяющиеся ( ставят рекорды ), им приходиться выполнять требование на остатки. Что требуется найти?

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 23:27 
Заблокирован
Аватара пользователя


22/03/08

7154
Саратов
Продолжаю искать потенциальные паттерны с минимальным диаметром для КПППЧ.
Если программа мне не наврала, для $k=26$ такие потенциальные паттерны с минимальным диаметром 134:
Код:
0  6  8  14  20  24  26  30  36  38  44  48  66  68  86  90  96  98  104  108  110  114  120  126  128  134
0  6  8  14  20  24  26  30  36  38  48  50  66  68  84  86  96  98  104  108  110  114  120  126  128  134
0  6  8  14  20  24  26  30  36  44  48  50  66  68  84  86  90  98  104  108  110  114  120  126  128  134
0  6  8  14  20  24  26  30  36  48  50  54  66  68  80  84  86  98  104  108  110  114  120  126  128  134
0  6  8  14  24  26  30  36  38  44  48  50  66  68  84  86  90  96  98  104  108  110  120  126  128  134
0  8  14  20  26  30  36  38  44  48  54  56  66  68  78  80  86  90  96  98  104  108  114  120  126  134

Запустила поиск для $k=28$.

Для не симметричных кортежей длины 26 из последовательных простых чисел минимальный диаметр равен 114.
Кортеж пока не найден с минимальным диаметром, если не считать того, который не удовлетворяет условию по остаткам:
Код:
[13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127]

(приведён maxal)

КПППЧ длины 26 с минимальным значением элементов кортежа (с любым диаметром) тоже пока не найдена, насколько мне известно.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 23:41 
Заслуженный участник


20/08/14
11966
Россия, Москва
Begemot82
В формулировке проблемы на сайте не вижу требований по остаткам. Вероятно из-за того, что для КПППЧ $n>12$ и $n=11$ оно выполняется всегда - тривиальных решений просто нет, последние были для $n=10$ и $n=12$ (и для последнего - не минимального диаметра), а на сайте требуют минимальный диаметр для $n>10$, что автоматом примиряет Вас с Nataly-Mak, т.к. все отличия кроются в меньших $n$, которые исключены из рассмотрения по условию. Для больших $n$ минимального диаметра не требуют, но тривиальных решений всё равно нет.
В общем если не заморачиваться на приведённых примерах, то условие проблемы достаточно корректное. Хоть в Вашем смысле, хоть в её - они просто совпадают на указанной в условии ОДЗ. ;-)

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение05.09.2015, 23:52 


10/07/15
286
Dmitriy40
Если рассматривать только n>10, то и ссылка на википедию лишняя.

 Профиль  
                  
 
 Re: Модифицировать программу (практическая помощь)
Сообщение06.09.2015, 03:47 
Заслуженный участник


20/08/14
11966
Россия, Москва
Ещё интересная задачка придумалась.
Рассмотрим кортежи чётной длины из последовательных простых чисел, исключительно из чисел-близнецов, найти КПППЧ из них. Любых, а потом и минимального диаметра.
Для первых $n$ это несложно:
Код:
n=4, 5: 0 2 6 8
n=6, 5: 0 2 6 8 12 14
n=8, 663569: 0 2 12 14 18 20 30 32
Причём все эти диаметры являются минимальными.

А уже для $n\geqslant10$ задача не такая уж простая.

(Паттерны минимального диаметра)

Код:
n=10, ?: 0 2 6 8 18 20 30 32 36 38

n=12, ?: 0 2 12 14 24 26 30 32 42 44 54 56

n=14, ?: 0 2 12 14 24 26 42 44 60 62 72 74 84 86
n=14, ?: 0 2 12 14 30 32 42 44 54 56 72 74 84 86
n=14, ?: 0 2 24 26 30 32 42 44 54 56 60 62 84 86

n=16, ?: 0 2 30 32 42 44 54 56 60 62 72 74 84 86 114 116

n=18, ?: 0 2 18 20 30 32 42 44 60 62 78 80 90 92 102 104 120 122

n=20, ?: 0 2 12 14 42 44 54 56 60 62 84 86 90 92 102 104 132 134 144 146
n=20, ?: 0 2 12 14 30 32 42 44 54 56 90 92 102 104 114 116 132 134 144 146

n=22, ?: 0 2 12 14 30 32 42 44 54 56 72 74 90 92 102 104 114 116 132 134 144 146

Пока вот что нашлось:
Код:
n=10, 3031329797: 0 2 12 14 42 44 72 74 84 86 (наименьшее)
n=10, 14168924459: 0 2 18 20 30 32 42 44 60 62
n=12, 17479880417: 0 2 30 32 42 44 60 62 72 74 102 104 (наименьшее)
n=10, 39713433671: 0 2 6 8 18 20 30 32 36 38 (минимальный диаметр)
n=12, 158074620437: 0 2 24 26 30 32 54 56 60 62 84 86
n=12, 5008751356547: 0 2 12 14 24 26 30 32 42 44 54 56 (минимальный диаметр)
n=16, 2640138520272677: 0 2 12 14 30 32 54 56 90 92 114 116 132 134 144 146 (наименьшее)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 695 ]  На страницу Пред.  1 ... 39, 40, 41, 42, 43, 44, 45 ... 47  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: HungryLion


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group