maximav в сообщении #1016934
писал(а): принципе не вводимы без координат на множестве, которое мы превращаем в многообразия
Почему не вводимы? Ну замените в определении карты область в

на область в конечномерном векторном (или аффинном) пространстве, и будет вам счастье.
Увы, не получится. Карты в многообразии

, а тензоры в "слоевых надстройках" над точками

. Забегая вперед, "ваша алгебра" об этом не знает.
Разница, а я выше не случайно утроил "разница/дифференциал/Дельта", как раз и обслуживают числа-координаты. И без них вы не введете касательные конструкции. С двумя точками

,

ничего не получится сделать, чтобы их сравнить, кроме как ввести координаты, а потом сравнивать/вычитать значения

с последующим устремлением

. Моя "разница" хорошо определена сама по себе, "Дельта" - это то, что нам будет нужно во всяких пределах, а дифференциал как раз породит нам ковектор. В таком контексте я и имел в виду, что "разница" с очевидностью прикрепляется к точке

. Согласитесь, что только через некий опосредованный скаляр вы вообще что-то сможете сравнивать в соседних местах на многообразии и вообще затевать математику на нем. От этого

вы далее получаете его координатную реализацию

и, вслед за этим, весь кокасательный слой

. Грубо говоря - а тема потока и есть "Грубое ..." - мои комментарии вокруг

,

и

были не более, чем аргументация/мотивация к природе и построению самого касательного пространства. Пардон, но так получается. Без его введения (=координаты), например постулируя "вашу" алгебру, без "нагораживания огорода внешних конструкций" вы не сдвинетесь ни на йоту, чтобы "банальными средствами" построить классический тензор. И, между прочим, вы по-прежнему ничего не достраиваете к множеству-многообразию

, даже вводя на нем координаты. Я не случайно замечал, что мы по-прежнему остаемся с голым множеством с естественно введенной топологией. (Как рассказывают байки, Манин и Ко демонстрировали себя бескоординатно, а потом "закрывались в комнате и пересчитывали в координатах") . То есть просто ничего не надо городить, а все само по себе уже лежит (не на "поверхности", разве что).
У меня создаётся впечатление, что целью указанной идеологии является построение всех объектов тензорного анализа с нуля
Не знаю, с чего это вы так решили? Я, например, даже наоброт всячески избегал такого "нуля". Иначе, с чего-бы то публика стала высказываться на счет кронекеровских

. Если теперь вы повторите рассуждения выше для "касательных операторов", то будет видно, что с операторами не столь естественно. Это я и имел в виду, не более. Ну конечно, проблем нет (если не трогать сопряжения), но вопрос в том, с чего стартуем не только для математики важен. Для физики, он вообще поперек горла всегда. Никакие поля никогда не жили в многообразиях (кроме скаляров

) и не рождались "естественно" в алгебраических аксиомах типа приведенной вами выше формализованной версии (я против нее, как формальной конструкции, кстати ничего и не имею). А вот то что Вы писали про Лебница, как я вижу по вашему посту,
это "алгебраически формальный лейбниц"

а вовсе не "300-летней давности". "Старый лейбниц" - это как раз-таки на числах и только на числах:

Образно выражаясь "мой лейбниц", который я упомянул в связи с "неизбежными координатами", не только естественно возникает на координатах. Он с ними "пришел как бесплатное приложение". Ваша версия - это алгебраическая, но для "касательных нужд" она не более чем дымовая завеса на "банальную координатизацию, легко проглатываемую любым дауном-студентом". Вводить "абстрактного лейбница" тоже не трудно, но это другая "печка, от какой стартуем". Попробуйте физикам печку просто так поменять. А вопросы здесь в потоке закрутились не вокруг определений (уже подчеркивал, пардон), а вокруг мотивировок: "а с чего это вдруг вы вводите ...?". Для моей "кокасательной мотивировки" выше вопросы в такой постановке даже не появляются. А с формальной алгеброй они лезут на каждом шагу. Дважды пардон еще раз, но именно от "формально голых чисел" и завязалась "разноголосица".
По поводу "сущностей". Неужели трудно догадаться, что это не более, чем "более доходчивая бирка" для "аккуратных слов". Вроде и рожицы вставлял (которых не люблю). Замените "сущность, природу" и подобные "физические слова" на "геометрический объект", "математическая надстройка/конструкция" и все будет ок. К чему буквоедство?... да здравствует "смыслоедство"

Ну "для лично вашей физической интуиции" -- хорошая оговорка
За "моими самоочевидными деревьями" лес лучше видеть. Да и между строк не трудно читать.
3) Подготовить площадку для обобщений:
Вот как раз-таки для этого переход от дифГеомКасатСлоев к более общему и становится более чем естественным. Природа старой конструкции "обнажена догола" и сразу видно, где/что менять можно и нужно. Нагружай абстрактную точку

всякими ЛВП, группами и т.д. Замечательная физика и математика естественным образом возникает.