2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4  След.
 
 Беда со слабой плоской гравитационной волной
Сообщение12.02.2015, 11:47 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Отпочковываю от post977225.html#p977225. Там была попытка получить плоскую гравитационную волну в виде:
$$
ds^2 = dt^2 - dx^2 - e^{2f} dy^2 - e^{-2f} dz^2
$$Считаем функцию $f$ зависящей только от разности $x - t$. Вычисляем тензор Эйнштейна, для отличных от нуля компонент получаем:
$$
G_{0 0} = G_{1 1} = - G_{0  1} = -2 f'^2
$$Уравнения ОТО
$$
f' = 0
$$ Никакой волны нет, это пространство Минковского.

Теперь произносим заклинание: рассмотрим слабую волну! Слабую - значит квадратичными членами пренебрегаем. Но если пренебречь квадратичными членами, то тензор Эйнштейна в этом приближении будет равен нулю (он же квадратичен по $f$), а раз так, то в линейном приближении в качестве функции $f$ можно взять всё что угодно, хоть синус.

Только вот есть одна беда, такую слабую волну экспериментально обнаружить никогда не удасться, уж больно она слаба...

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение12.02.2015, 14:35 
Заслуженный участник
Аватара пользователя


28/09/06
11260
SergeyGubanov в сообщении #977230 писал(а):
Но если пренебречь квадратичными членами, то тензор Эйнштейна в этом приближении будет равен нулю (он же квадратичен по $f$), а раз так, то в линейном приближении в качестве функции $f$ можно взять всё что угодно, хоть синус.
Ах, какой ужас-то...

Когда рассматриваются упругие колебания, то в качестве малой волны тоже можно взять что угодно, "даже ужасный синус". Только для ударных волн (существенно нелинейный случай) форма имеет значение.

SergeyGubanov в сообщении #977230 писал(а):
Только вот есть одна беда, такую слабую волну экспериментально обнаружить никогда не удасться, уж больно она слаба...
:facepalm: Просто даже и не знаю что тут сказать.

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение12.02.2015, 16:13 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
epros в сообщении #977287 писал(а):
Когда рассматриваются упругие колебания...
К данному случаю это рассуждение неприменимо, ибо решение точного уравнения для указанной метрики $f'=0$ гарантированно не содержит не то что колебаний, а вообще никаких движений: $f = \operatorname{const}$.

epros в сообщении #977287 писал(а):
Просто даже и не знаю что тут сказать.
Иногда мужчина считает себя обязанным ответить даже если не знает правильного ответа. Это называется "синдром мужского ответа".

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение12.02.2015, 16:36 
Заслуженный участник
Аватара пользователя


28/09/06
11260
SergeyGubanov в сообщении #977310 писал(а):
epros в сообщении #977287 писал(а):
Когда рассматриваются упругие колебания...
К данному случаю это рассуждение неприменимо, ибо решение точного уравнения для указанной метрики $f'=0$ гарантированно не содержит не то что колебаний, а вообще никаких движений: $f = \operatorname{const}$.
Данное рассуждение в точности применимо к данному случаю, ибо нелинейность уравнений гравитационного поля действует ровно так же, как нелинейность упругих напряжений среды.

Решение точного уравнения для $f'=0$ никому на фиг не нужно, ибо близость к нулю тензора Эйнштейна гарантируется малостью $f$.

Впрочем, можете поступить так:
1) Взять в качестве $f$ синус, помноженный на $10^{-5}$.
2) Найти из Вашего уравнения соответствующий $h$.
3) Порадоваться тому, что у Вас теперь есть точное решение (с учётом нелинейности) уравнений.

SergeyGubanov в сообщении #977310 писал(а):
epros в сообщении #977287 писал(а):
Просто даже и не знаю что тут сказать.
Иногда мужчина считает себя обязанным ответить даже если не знает правильного ответа. Это называется "синдром мужского ответа".
Ну вот, скажем, гравитационный потенциал у поверхности Земли на сколько порядков меньше единицы? Мешает ли это нам его экспериментально обнаружить?

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 11:49 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
epros в сообщении #977313 писал(а):
Данное рассуждение в точности применимо к данному случаю, ибо нелинейность уравнений гравитационного поля действует ровно так же, как нелинейность упругих напряжений среды.

Решение точного уравнения для $f'=0$ никому на фиг не нужно, ибо близость к нулю тензора Эйнштейна гарантируется малостью $f$.
Уравнение $f'=0$ нелинейно?

Чтобы получить нелинейность нужно учесть больше степеней свободы чем одну лишь $f$. Если учитывать одну лишь $f$, то никакой гравитационной волны нет.

epros в сообщении #977313 писал(а):
Впрочем, можете поступить так:
Здесь нет ассортимента вариантов, я поступить так не могу, а должен, это единственный вариант. С одной лишь $f$ волны вообще нет, а значит надо добавить ещё какую-то степень свободы. То есть учёт $h$ обязателен. А если вдруг не хватит и её, то надо будет искать какую бы ещё степень свободы учесть.



Вместо $h$ оказывается удобнее использовать экспоненту от неё $Q=e^{-h}$, так уравнение получается "красивее":
$$
ds^2 = dt^2 - dx^2 - Q^2 \left( e^{2f} dy^2 + e^{-2f} dz^2 \right), 
\quad \sqrt{-g} = Q^2
\eqno(1)
$$ тензор Эйнштейна$$
G_{00} = G_{11} = - G_{01} = - 2 \left( f'^2 + \frac{Q''}{Q} \right), \eqno(2)
$$"красивое" уравнение осциллятора $Q$ с переменной частотой $f'$:$$
Q'' + f'^2 \, Q = 0 \eqno(3)
$$
Если "от балды" в качестве $f$ взять синус, то $Q$ будет выражаться через функции Матье (MathieuC, MathieuS):
$$
f(x-t) = A \sin(k(x-t)),
$$$$
Q(x-t) = C_1 \operatorname{MathieuC} \left[ \frac{A^2}{2}, -\frac{A^2}{4}, k(x-t) \right]
+ C_2 \operatorname{MathieuS} \left[ \frac{A^2}{2}, -\frac{A^2}{4}, k(x-t) \right].
$$ И тут становится очевидна следующая неприятность катастрофических масштабов. Гладкие решения уравнения (3) имеют нули, то есть обнуляется $\sqrt{-g}$. Обнуление $\sqrt{-g}$ является катастрофой само по себе, но в контексте этой темы это катастрофа вдвойне, ведь такую волну никак невозможно назвать слабой.

Если использовать негладкие решения уравнения (3), с разрывом первой производной, то обнуления $\sqrt{-g}$ можно будет избежать. Однако, в разрыве должен быть некий дельтаобразный тензор энергии импульса прочей материи, то есть это будет не "чистая" гравитационная волна.

Итого
  • Учёт одной функции $f$ не даёт волн вообще.
  • Учёт двух функций $f$ и $Q$ даёт сильнейшую волну обнуляющую $\sqrt{-g}$, то есть слабой волны не даёт.

Возможно, слабая волна получается только если принять во внимание какие-то три функции?..

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 12:33 
Заслуженный участник
Аватара пользователя


28/09/06
11260
SergeyGubanov в сообщении #977628 писал(а):
Уравнение $f'=0$ нелинейно?
Уравнения ОТО нелинейны.

SergeyGubanov в сообщении #977628 писал(а):
Итого
  • Учёт одной функции $f$ не даёт волн вообще.
  • Учёт двух функций $f$ и $Q$ даёт сильнейшую волну обнуляющую $\sqrt{-g}$, то есть слабой волны не даёт.

Возможно, слабая волна получается только если принять во внимание какие-то три функции?..
Вы тут собрались оспаривать известный факт существования в ОТО слабой гравитационной волны?

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 12:49 
Заслуженный участник
Аватара пользователя


23/07/05
18034
Москва
SergeyGubanov в сообщении #977628 писал(а):
Если использовать негладкие решения уравнения (3), с разрывом первой производной, то обнуления $\sqrt{-g}$ можно будет избежать.
Возьмите в качестве $f$ финитную функцию.

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 14:42 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Someone в сообщении #977648 писал(а):
Возьмите в качестве $f$ финитную функцию.
А чем это поможет?

Я так рассуждаю: при $Q > 0$ и $f'^2 \ge 0$ чтобы удовлетворить уравнению $Q'' + f'^2 \, Q = 0$ нужно чтобы $Q'' \le 0$. То есть график функции $Q$ должен быть либо прямой либо загнут вниз, а значит $Q$ достигнет нуля или, наоборот, когда-то из него вышла. Предотвратить обнуление $Q$ можно устроив разрыв её первой производной. Например, так как это показано на следующем рисунке:

Изображение


-- 13.02.2015, 15:42 --

Да, с тремя функциями полегче становится:
$$
ds^2 = e^{-2h} \left( dt^2 - dx^2 \right) - Q^2 \left( e^{2f} dy^2 + e^{-2f} dz^2 \right), 
\quad \sqrt{-g} = e^{-2h} Q^2,
\eqno(1)
$$ Все функции от $(x - t)$. Тензор Эйнштейна$$
G_{00} = G_{11} = - G_{01} = - \frac{2}{Q} \left( Q'' + 2 h' Q' + f'^2 Q \right). \eqno(2)
$$"Красивое" уравнение осциллятора $Q$ с переменной частотой $f'$ и затуханием $h'$:$$
Q'' + 2 h' Q' + f'^2 Q = 0 \eqno(3)
$$

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 17:36 
Заслуженный участник
Аватара пользователя


23/07/05
18034
Москва
SergeyGubanov в сообщении #977689 писал(а):
А чем это поможет?
Тем, что если Вы возьмёте "достаточно" финитную функцию, то $Q$ не успеет обратиться в ноль.

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 18:18 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Someone в сообщении #977792 писал(а):
Тем, что если Вы возьмёте "достаточно" финитную функцию, то $Q$ не успеет обратиться в ноль.
Долетит по инерции. Чтобы маятник не успел долететь до нуля необходимо своевременно включить вязкое трение.

Ну, вобщем, только с тремя функциями удаётся построить решение, которое на плюс-минус бесконечности переходит в Минковского (то есть функции $Q$, $f$, $h$ на плюс-минус бесконечности становятся константами).

$$
ds^2 = e^{-2h} \left( dt^2 - dx^2 \right) - Q^2 \left( e^{2f} dy^2 + e^{-2f} dz^2 \right), 
\quad \sqrt{-g} = e^{-2h} Q^2,
$$$$
Q'' + 2 h' Q' + f'^2 Q = 0.
$$


Вот, смоделировал ситуацию:

Изображение

На этом рисунке начальное положение "маятника" $Q=1$, "упругость" $f'$ и "вязкость" $h'$ нулевые. Потом включается и выключается "упругость" $f' \ne 0$. Из-за этого маятник приходит в движение и начинает падать в ноль. Через некоторое время включается сильная вязкость $h' \ne 0$ и держится до тех пор пока "маятник" не остановится. Потом и "вязкость" выключается.

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 18:36 
Заслуженный участник
Аватара пользователя


23/07/05
18034
Москва
SergeyGubanov в сообщении #977848 писал(а):
Долетит по инерции.
Согласен. Там же вторая производная. Но это координатная особенность. Сразу после прохождения волны надо исправить координаты. (ЛЛ2, § 109.)

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение13.02.2015, 18:49 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Без включения "вязкости" детерминант обнулится - это не координатная особенность.

Вот после прохождения $Qfh$-волны да, конечно, координаты можно и поменять -- "перенормировать".

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение14.02.2015, 19:09 
Заслуженный участник
Аватара пользователя


23/07/05
18034
Москва
SergeyGubanov в сообщении #977874 писал(а):
Без включения "вязкости" детерминант обнулится - это не координатная особенность.
Я же сказал: возьмите финитную функцию такую, чтобы за время прохождения волны определитель не успел обнулиться, а сразу после прохождения волны исправьте систему координат (ЛЛ2, § 109).

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение16.02.2015, 11:49 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Someone в сообщении #978358 писал(а):
SergeyGubanov в сообщении #977874 писал(а):
Без включения "вязкости" детерминант обнулится - это не координатная особенность.
Я же сказал: возьмите финитную функцию такую, чтобы за время прохождения волны определитель не успел обнулиться, а сразу после прохождения волны исправьте систему координат (ЛЛ2, § 109).
А, дошло. После прохожения "финитной" волны $h=0$, $f=0$, $Q=A + B \, (x-t)$:
$$
ds^2 = dt^2 - dx^2 - \left( A + B \, (x-t) \right)^2 \left( dy^2 + dz^2 \right), \eqno(1)
$$ и, казалось бы, детерминант обнуляется. Но тензор кривизны метрики (1) равен нулю, то есть это пространство Минковского, которое просто параметризовано "неудачными" координатами.

 Профиль  
                  
 
 Re: Беда со слабой плоской гравитационной волной
Сообщение16.02.2015, 17:08 
Аватара пользователя


14/11/12
1379
Россия, Нижний Новгород
Функция $h(x-t)$ оказывается лишней ещё и по другой причине -- она устраняется заменой координат:
$$
d \xi = e^{-2 h} (dx - dt), \quad \chi = x + t
$$
$$
ds^2 = - d\xi \, d\chi - Q^2 \left( e^{2 f} dy^2 + e^{-2 f} dz^2 \right),
$$
$$
G_{\xi \xi} = - \frac{2}{Q} \left( Q'' + f'^2 Q \right)
$$
$$
Q'' + f'^2 Q = 0
$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 53 ]  На страницу 1, 2, 3, 4  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group