Ладно. Ветку можно закрывать, ибо пошел оффтоп. Основной вопрос я вроде бы для себя выяснил: непрерывность действительно обеспечивает сохранение размерности, но все же главную роль в том, что наше пространство трехмерно (нельзя на него биективным отображением просто так ввести структуру линейного пространства другой размерности), играет тот факт, что
только трехмерная структура естественно согласована с геометрией нашего пространства (с аксиоматикой геометрии) в том смысле, что только в ней абстрактные объекты напрямую соответствуют "осязаемым" в реальности, как то, прямой, плоскости, отрезку и т.п., без чего ориентирование в реальном физическом пространстве невозможно.
Если, конечно, у
Xaositect не будет принципиальных возражений по этому суждению. (Ваше мнение мне особо важно, ибо Вы непредвзяты и стараетесь вникнуть в проблему, даже такую "дурацкую". За что отдельная благодарность. :) )
Ну в принципе все так и есть, если использовать представления о реальном физическом пространстве конца 19 века.
Вообще, геометрия безусловно появилась как наука о реальном мире, землемерие (интересно, что в античности была известна одна неевклидова геометрия - сферическая, использующаяся в астрономии. Но это не осознавалось, геометрия и астрономия - измерение неба - были разными науками). Доказательства у Евклида часто опираются не на постулаты, которых с современной точки зрения абсолютно недостаточно, а на некие интуитивные представления о пространстве. В таком виде геометрия существовала до начала 19 века, когда была открыта неевклидовы геометрии. Ситуация стала такой: есть разные геометрии, и есть реальное пространство, и можно проверить, какая геометрия в нем работает. Это один из тех результатов, которые можно назвать началом современной математики - математика окончательно отделилась от естественных наук и стала не изучением модели-идеализации реального мира, а изучением возможных миров-моделей. Стало понятно, что даже очевидные утверждения, типа того, что на прямой существуют как минимум две точки или что прямая, пересекающая одну сторону треугольника, должна пересечь еще одну, должны быть явно выписаны, потому что мы не можем уже опираться на интуицию о пространстве. Работа эта завершилась созданием системы аксиом Гильберта, которая позволяет доказать утверждения Евклида с современными представлениями о математической строгости. Соответственно, другие геометрии определяются другими наборами аксиом. Появились разные более общие геометрии, в частности, появились формальные понятия размерности, которые строго описывали, чем отличается плоскость от пространства и обобщали это различие дальше, рассматривая четырехмерное и многомерные пространства. Потом постепенно развилась алгебра и топология, и стало понятно, что геометрия евклидова или неевклидова пространства - это всего лишь небольшой частный случай из кучи разных геометрий на разных многообразиях разной размерности.