Для одной точки она верна и для двух тоже.
Ну, тут так и просится обобщение =)
Уважаемая
lunya,
объясните мне корректность Вашего вопроса. Вы спрашиваете, почему вот такую нехитрую комбинацию из отношения двух сумм обозвали центром масс? Ответ напрашивается сам собой: по определению. Почему Вы не спрашиваете: отчего отрезок в треугольнике, соединяющий его вершину с серединой противоположной стороны, называется медианой. Это вопрос почти такого же порядка. От определения не требуется особых объяснений. Оно определяет некую "краказябру" чем-то более простым (в основном), лаконичным и адекватным. Это, что касается математической аксиоматики.
Теперь по физике. Решал один известный физик задачу о движении твердого тела. Формулировал закон его поступательного движения. В результате его простых теоретических умствований родилось соотношение, сформулированное как теорема о движении центра масс. И да, там возникла вот такая комбинация. И да, обозвали ее (позже или раньше) центром масс.
Вот Вы еще спрашиваете, в чем необходимость находить систему отсчета, где импульс - нуль. Вот будете Вы, например, изучать какую-нибудь "сложную" систему (задача двух тел в механике, движение газа в молекулярной физике...), состоящую из множества частиц. Эта система (точнее элементы этой системы) совершает самые разные виды движения. Вы смотрите на все это безобразие и думаете... так, вот они степени свободы... вот они частицы... хм... так, движение можно представить как сумму движения центра масс плюс движение относительно этого центра масс (а Вы, между делом, возжелали, ко всему прочему, найти сечение столкновений частиц)... Ну вот, говорите Вы... сейчас я сяду в систему центра масс и останется рассмотреть относительное движение частиц... ура... задача стала легче (и интегралы по распределениям в молекулярной физике с отдельными членами для движения центра масс и относительного движения стали нагляднее, и задача двух тел уже не такая сложная...).
Другое дело, если бы Вы спросили: поясните мне "на пальцах" физический смысл этой величины. Вот тогда я бы попросил Вас представить плоский треугольник (без потери общности) с переменной плотностью. Плотность переменная, следовательно все точки треугольника "неравноправны". Вы в рамках статики хотите найти такую точку треугольника, под которую бы Вы подставили иголку, и треугольник бы не упал. Как ее найти? Понятно, что она должна быть "эффективным центром" треугольника. Вы вспоминаете, например, что средняя скорость определяется как
. Интеграл непрерывный аналог суммы. В числителе стоит переменная скорость, которая меняется от секунды к секунде. Так же у Вас и масса меняется от координаты к координате на поверхности треугольника. В знаменателе - полное время. В задаче статики аналог - полная масса. То есть, рассуждаете Вы дальше центр масс - это некая "средняя" точка. Потом вспоминаете...точно, в физике средняя величина
, распределенная с плотностью
по объему
есть
, где удельная плотность
показывает какой вес от
приходится на область пространства
.
Аналогия ясна?!
P.S. Рассмотрение выше проведено только для случаев, когда нет необходимости различать центр инерции и центр масс.