2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 20  След.
 
 Re: Асимптотическая плоскость
Сообщение21.06.2012, 21:47 
Shtorm в сообщении #587678 писал(а):
И вот конус – это первая поверхность, в которой мы (выделено мной, А.К.) встретились с проблемой,
Будьте точнее. Здесь уместнее местоимение "я".
Shtorm в сообщении #587678 писал(а):
Далее, для вычисления предела необходимо рассмотреть последовательность каких-либо точек, сходящихся к нужной там точке. Это я по Фихтенгольцу сейчас рассуждаю, хоть и своими словами.
Не верю. Ваши "свои слова" --- это (обычно) туфта.
Не "каких-либо" точек. Любая (всякая) последовательность должна... В том числе, например, и последовательность точек какой-либо спирали. Вы взяли только последовательность траекторию (x,x), но ведь (x,100x), (x,0), (0,y) и др. тоже уходят в бесконечность.
Но я и не ожидал, что Вы разбираетесь в этом, о чём явно написал:
Алексей К. в сообщении #587436 писал(а):
Но Вы, ещё бОльший чайник чем я, неужели Вы так легко с ними справляетесь?

Но ведь Вы, вычисляя $k_{1,2}$, конкретно взяли траектории (x,0) и (0,y), а для $b$ Вы почему-то (или зачем-то) сыскали другую траекторию. Другую секущую плоскость, если угодно.
Вам это не напоминает напёрстничество?
Мне --- да.

 
 
 
 Re: Асимптотическая плоскость
Сообщение21.06.2012, 23:37 
Аватара пользователя
ИСН в сообщении #587709 писал(а):
Так, ясно. Теперь:
Shtorm в сообщении #587697 писал(а):
если проекции этих асимптот не будут совпадать, то и асимптотической плоскости (А.П.) не будет.
- откуда это? кто сказал?


Ах, да, точно будет, просто пойдёт под углом...надо подумать....Ну тогда, следует упомянуть о потенциальной и актуальной бесконечности. Для поверхности $z=\sin(x)+e^{-y^2}$ эти асимптоты расположены в плоскостях, которые удовлетворяют соотношению $|C|\le1$. То есть множество параллельных плоскостей будет ограничено – актуальная бесконечность. А во всех случаях реальной А.П. такая бесконечность не ограничена – то есть потенциальная бесконечность.

 
 
 
 Re: Асимптотическая плоскость
Сообщение21.06.2012, 23:45 
Shtorm в сообщении #587754 писал(а):
...актуальная бесконечность... потенциальная бесконечность...
Я, пожалуй, откланяюсь... Да и давно уж пора...

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 00:50 
Аватара пользователя
Алексей К. в сообщении #587727 писал(а):
Не верю. Ваши "свои слова" --- это (обычно) туфта.


Цитирую Г. М. Фихтенгольц "Курс дифференциального и интегрального исчисления", том 1, Глава пятая, пункт 166:

Заголовок: "Сведение к случаю варианты".
"Рассмотрим в $n$-мерном пространстве последовательность точек

$${M_{k}(x_{1}^{(k)},...x_{n}^{(k)})},   (k=1,2,...)$$

Мы будем говорить, что эта последовательность сходится к предельной точке $M_{0}(a_{1},...,a_{n})$, если при $k \to +\infty$ расстояние

$$M_{0}M_{k} \to 0$$

Вместо этого можно было бы потребовать, чтобы координаты точки $M_{k}$ порознь стремились к соответствующим координатам точки $M_{0}$, то есть чтобы было

$$x_{1}^{(k)} \to a_{1},.., x_{n}^{(k)} \to a_{n}$$ ".

Я уж не буду всё цитировать, там дальше он всё доказывает, рассматривает различные случаи и примеры.

Алексей К. в сообщении #587727 писал(а):
Вы взяли только последовательность траекторию (x,x), но ведь (x,100x), (x,0), (0,y) и др. тоже уходят в бесконечность.


Последовательность (x,100x), сейчас проверил от и до. Получилась бесконечность, точнее минус бесконечность. Что касается (x,0), (0,y) – то они не соответствуют заданному пределу, так как в пределе обе переменные должны стремится к бесконечности.
Алексей К. в сообщении #587727 писал(а):

Но ведь Вы, вычисляя $k_{1,2}$, конкретно взяли траектории (x,0) и (0,y),..


Точнее, взял $(x,C) и (C,y)$, где $C$ - константа

Алексей К. в сообщении #587727 писал(а):
….а для $b$ Вы почему-то (или зачем-то) сыскали другую траекторию. Другую секущую плоскость, если угодно.
Вам это не напоминает напёрстничество?
Мне --- да.


Пределы для угловых коэффициентов, я взял по аналогии с пределом функции одной переменной, когда ищем асимптоту. Когда же вычисляем $b$, то туда подставляются оба угловых коэффициента. Соответственно и получаются две бесконечности.

-- Пт июн 22, 2012 00:52:16 --

Алексей К. в сообщении #587758 писал(а):
Shtorm в сообщении #587754 писал(а):
...актуальная бесконечность... потенциальная бесконечность...
Я, пожалуй, откланяюсь... Да и давно уж пора...


Как везде написано, понятия актуальная и потенциальная бесконечность - используются в математике. Можно коненечно заменить их другими фразами или символами.

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 08:36 
Аватара пользователя
Shtorm в сообщении #587778 писал(а):
Как везде написано, понятия актуальная и потенциальная бесконечность - используются в математике.
Изображение Изображение Изображение

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 11:37 
Аватара пользователя
Ну, хорошо, давайте уберём слова актуальная и потенциальная. (В теории множеств как-то наверно они обозначаются спецсимволами). Но суть от этого не изменится: одно дело семейство плоскостей существует на ограниченном отрезке (в заданном диапазоне), а другое дело семейство плоскостей ничем не ограничено.

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 11:44 
Аватара пользователя
Shtorm в сообщении #587856 писал(а):
Ну, хорошо, давайте уберём слова актуальная и потенциальная. (В теории множеств как-то наверно они обозначаются спецсимволами).
Пока что никак, но Вы для своих потребностей можете ввести и использовать символы $\infty_{\text{actual}}$, $\infty_{\text{potential}}$.

Также для промежуточного типа бесконечности (что бы это ни означало), если необходимость в таковом возникнет, можно использовать обозначение $\infty_{\text{intermed}}$.

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 13:05 
Аватара пользователя
Что значит "семейство плоскостей существует на ограниченном отрезке"? Как может плоскость существовать на отрезке, во-первых? И во-вторых, какое это имеет отношение к асимптотической плоскости? Ведь в её определении фигурировало просто какое-то семейство, безо всяких указаний, должно ли оно помещаться на некотором отрезке (что бы это ни значило) или нет.

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 13:58 
Аватара пользователя
ИСН в сообщении #587880 писал(а):
Что значит "семейство плоскостей существует на ограниченном отрезке"? Как может плоскость существовать на отрезке, во-первых?


Я подумаю, как грамотно сформулировать. Но пока так можно перефразировать: семейство плоскостей, удовлетворяющее заданным требованиям существует лишь в ограниченной области пространства.

ИСН в сообщении #587880 писал(а):
И во-вторых, какое это имеет отношение к асимптотической плоскости? Ведь в её определении фигурировало просто какое-то семейство, безо всяких указаний, должно ли оно помещаться на некотором отрезке (что бы это ни значило) или нет.


Думаю, что определение придётся усовершенствовать

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 14:04 
Аватара пользователя
Shtorm в сообщении #587896 писал(а):
Но пока так можно перефразировать: семейство плоскостей, удовлетворяющее заданным требованиям существует лишь в ограниченной области пространства.
Худо переформулировали. Плоскость сама по себе бесконечна, т.е. неограничена. В ограниченную область она (даже одна) никак не влезет.
Shtorm в сообщении #587896 писал(а):
Думаю, что определение придётся усовершенствовать
Нормальное было определение.
Воистину, дай человеку стеклянный нос - он его разобьёт и сам порежется.

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 14:36 
Аватара пользователя
ИСН в сообщении #587899 писал(а):
Худо переформулировали. Плоскость сама по себе бесконечна, т.е. неограничена. В ограниченную область она (даже одна) никак не влезет.


Ну тогда так:

Если семейство параллельных плоскостей, обладающее указанным свойством, задаётся уравнениями вида

$$Ax+By+Cz+D=0$$

где значения коэффициента D принадлежат интервалу $(-\infty;+\infty)$ то асимптотическая плоскость существует, если же значения коэффициента D принадлежат интервалу $(a;b)$ или отрезку $[a;b]$, где $a$ и $b$ - конечные величины, то асимптотической плоскости не существует.

ИСН в сообщении #587899 писал(а):
Нормальное было определение.


Я не согласен с Вами, что $z=\sin(x)+e^{-y^2}$ имеет А.П. И вообще давно уже хотел Вас спросить: Вы написали, что
ИСН в сообщении #587244 писал(а):
Каждая плоскость $z=C,\,|C|\le1$, является асимптотической!


А где тогда, то семейство плоскостей, которое в пересечении с А.П. даёт асимптоты кривых, образованных пересечением семейства плоскостей с поверхностью, согласно определению?

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 14:49 
Аватара пользователя
А я всё ждал, когда Вы спросите. Ну-с, поехали. Могу я найти такое $x_0$, что $\sin x_0=C$?
(К вопросу о том, как выглядит уравнение плоскости, мы вернёмся потом.)

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 18:12 
Аватара пользователя
ИСН в сообщении #587910 писал(а):
Могу я найти такое $x_0$, что $\sin x_0=C$?


Да. $x_0=(-1)^{k}\arcsin C +\pi k$

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 19:27 
Аватара пользователя
Ага, так. Я возьму один из них. Теперь: $x=x_0$ - это плоскость? Да или нет? Она пересекает ту плоскость, которую я предложил в качестве кандидата на асимптотическую? Она ей перпендикулярна?

 
 
 
 Re: Асимптотическая плоскость
Сообщение22.06.2012, 19:35 
Аватара пользователя
ИСН в сообщении #587966 писал(а):
Ага, так. Я возьму один из них. Теперь: $x=x_0$ - это плоскость? Да или нет? Она пересекает ту плоскость, которую я предложил в качестве кандидата на асимптотическую? Она ей перпендикулярна?


Да, в трёхмерном пространстве это будет уравнение плоскости. Да, она ей перепендикулярна.

 
 
 [ Сообщений: 297 ]  На страницу Пред.  1 ... 8, 9, 10, 11, 12, 13, 14 ... 20  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group