Следствие 2 (Теоремы 3)
Треугольник Гильбрайта, в основании которого находятся простые числа:
и далее подпоследовательность натуральных чисел ПСВ
, начиная с простого числа
, будет содержать строку, состоящую из одних нулей.
Доказательство.
В этом случае, подпоследовательность натуральных чисел в основании треугольника Гильбрайта, начиная с простого числа
полностью совпадает с ПСВ
. Поэтому первые и последующие разности в Треугольнике Гильбрайта, с номерами больше r, полностью совпадают с аналогичными разностями в треугольнике Гильбрайта с основанием ПСВ
, а следовательно, и со строкой разностей, содержащей нули ч.т.д.
В качестве примера на рис.4 рассмотрим треугольник Гильбрайта с основанием: 2, 3, 5 и далее ПСВ
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 71 73 77 79 83 89 91
1 2 2 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2 6 4 2 4 2 4 6 2
1 0 2 2 2 2 2 2 4 4 2 2 2 2 2 2 4 4 2 2 2 2 2 2 4
1 2 0 0 0 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0 2
1 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2
1 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2
1 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2
1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Рис.4 Треугольник Гильбрайта с основанием: 2, 3, 5 и далее ПСВ