2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 09:25 
Аватара пользователя
Нет соответствия. Поскольку интервалы не принадлежат множеству комплексных чисел. А лишь объединению множеств действительных и чисто мнимых чисел. При этом объединение лишь для краткости рассмотрения. Чтобы не выписывать две формулы, отдельно для пространственноподобных и времениподобных отрезков.

 
 
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 09:27 
Andante
Ну конечно, Cos(x-pi/2) что-то путает, а у вас все в порядке.
Я не перестаю удивляться, как Cos(x-pi/2), один из самых знающих людей на этом форуме, и к тому же всегда отвечающих очень подробно, часто оказывается проигнорирован спрашивающими. Это загадка какая-то. Чего же им, этим спрашивающим, нужно?

Такие люди, как Cos(x-pi/2), наобум не говорят. Нужно их слушать, а не препираться. Это вам же больше всех и нужно.

 
 
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 15:44 
Евгений Машеров в сообщении #1656618 писал(а):
интервалы ... принадлежат ... объединению множеств ...чисто мнимых чисел

Так я с начала темы прошу дать соответствие аргумента чисто мнимого числа длине вектора.

-- Вс сен 29, 2024 15:46:15 --

sergey zhukov в сообщении #1656619 писал(а):
Нужно их слушать, а не препираться.

Я уточняю, правильно ли я понял. Подожду ответа ув. Cos(x-pi/2).

 
 
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 15:57 
Andante
Вот и следуйте этим советам:
Cos(x-pi/2) в сообщении #1656494 писал(а):
Методический совет: при первоначальном чтении трудных книг (таких как про СТО, или, например, про квантовую механику) просто старайтесь не делать самому себе никаких заключений досрочно, после каждого прочитанного абзаца или страницы. А спокойно читайте дальше и смотрите, как новые для Вас необычные понятия и формулы будут применяться в дальнейшем изложении и в задачах. Так постепенно и раскроется их предназначение.


Евгений Машеров в сообщении #1656616 писал(а):
Поэтому Вам советуют, убедившись в бесплодности данной аналогии применительно к данной задаче, оставить её для случаев, где она полезна (в электротехнике там, или обработке сигналов), а для изучения СТО её не применять, она не нужна здесь. Если же данная аналогия Вам настолько дорога - развейте её в философскую концепцию и предложите где-либо в ином месте, здесь она, боюсь, поддержки не получит.

Отложите пока свой вопрос, он потом сам отпадет за ненадобностью.

 
 
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 19:11 
Аватара пользователя

(Оффтоп)

Ох уж эти хирурги! Всё бы им резать и резать. Я вам сейчас таблеточки выпишу. Попьёте недельку и уши сами отвалятся.

 
 
 
 Re: Как направить длину вектора?
Сообщение29.09.2024, 19:44 
Всё основное уже пояснено. В той геометрии Минковского, которая реально применяется в имеющих реальный физический смысл задачах, векторам не сопоставляются комплексные числа.

Квадрат интервала $(\Delta s)^2$ это действительное число, а не комплексное.

(Разумеется, как и всякое действительное число его можно считать комплексным, но тогда аргумент у него тривиальный, не представляющий какого-то особого интереса: либо это $0,$ если $(\Delta s)^2>0$, либо $\pm\pi,$ если $(\Delta s)^2<0.$ Если $(\Delta s)^2=0,$ то аргумент неопределённый.)

Важный геометрический смысл в геометрии Минковского имеют и находят применение в задачах действительные величины: $(\Delta s)^2=(c\Delta \tau)^2>0,$ либо $(-(\Delta s)^2)=(\Delta l)^2>0,$ либо $(\Delta s)^2 = 0;$ и действительные положительные корни квадратные из них.

На всякий случай вот две схемки, поясняющие структуру пространства Минковского, т.е. поясняющие "правила соответствия" между векторами-отрезками в пространстве Минковского и их длинами $c\Delta \tau$ либо $\Delta l.$ Важным является не представление интервала на какой-то совершенно не нужной здесь комплексной плоскости, а наклон (или направление) отрезков по отношению к координатным осям $ct$ и $x$ на такой карте пространства Минковского:

Изображение

Изображение

Более содержательными были бы картинки с изображениями световых конусов в различных точках пространства Минковского, с мировыми линиями по-всякому движущихся тел, и, главное, - относящиеся к разным системам координат. Но до самого-то главного, - до изучения преобразований координат, - топикстартер по-видимому ещё не добрался.

P.S. В литературе по физике нет словесных строгих определений. Смысл и способы применения физических величин определяются не столько их названиями, сколько уравнениями в конкретных задачах. Притом задачи формулируются в связи с экспериментами, а не на основе лишь абстрактных аксиом. Поэтому Ландау и Лифшиц, да и авторы других книг, называют $s$ и интервалом, и "расстоянием с формальной математической точки зрения", а также, в соответствующих задачах, - собственным временем или собственной длиной. (Т.е. слово "расстояние" там не выступает в роли строгого термина. Как говорится: хоть горшком назовите, но только в печь не ставьте.)

P.P.S. У меня сложилось впечатление, что топикстартер желает настаивать на своих представлениях, вместо того чтобы разумным образом понять написанное в учебниках и в уже многочисленных форумных ответах. Не вижу, что ещё тут пояснять, ухожу из этой ветки.

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 08:31 
Cos(x-pi/2) в сообщении #1656691 писал(а):
В той геометрии Минковского, которая реально применяется в имеющих реальный физический смысл задачах, векторам не сопоставляются комплексные числа.

Проверим это.
[Сазанов А.А. Четырехмерный мир Минковского. - М.. Наука. Гл. ред. физ.-мат. лит., 1988. - (Пробл. науки и техн. прогресса).-224 с. - ISBN 5-02-0137340] "Для студентов физико-математических и технических специальностей вузов..."
Это учебник по физике. В разделе 10 "Геометрическая интерпретация множества комплексных чисел" на стр. 67 читаю "Пользуясь определением (1.29) длины вектора, найдём из (2.19) длины базисных векторов $\vec{e_1}$ и $\vec{e_2}$:
$|\vec{e_1}|=...=1$, $|\vec{e_2}|=...=i$.
Тот факт, что длина вектора $\vec{e_2}$ выражается мнимым числом..."
Длину вектора, а не вектор целиком, сравнивают с мнимым числом. Как? Можете дать правила сопоставления длины вектора и пары модуль-аргумент мнимого числа?

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 08:47 
Аватара пользователя
Для начала - это не учебник, это научпоп. "Высокая популяризация", для уже обладающих некоторыми знаниями, но именно популяризация. С неизбежными неточностями и упрощениями.
Затем - Вы уверены, что "комплексное число" и "мнимое число" это синонимы?

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 09:01 
Аватара пользователя

(Оффтоп)

Andante в сообщении #1656729 писал(а):
Проверим это.

Изображение

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 10:10 
Евгений Машеров в сообщении #1656733 писал(а):
С неизбежными неточностями

Если вы видите неточность, то, пожалуйста, дайте точные правила как установить соответствие между длиной вектора и парой модуль-аргумент мнимого числа.

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 10:28 
Cos(x-pi/2) в сообщении #1656494 писал(а):
величина $$(\Delta s)^2=(c\Delta t)^2-(\Delta x)^2-(\Delta y)^2-(\Delta z)^2$$ больше нуля, то такой отрезок называют времениподобным и при этом величину $\sqrt{(\Delta s)^2}=\Delta s = c\Delta \tau$ интерпретируют


Cos(x-pi/2)

Здесь, по-видимому, опечатка.
В приведенной выше цитате две формулы. В обеих формулах фигурирует $\Delta \tau$. Но смысл у них различный. Если вторую формулу возвести в квадрат, то справа мы не получим правую часть первой формулы.

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 10:42 
Аватара пользователя
Ещё раз. Прошу Вас уяснить разницу между понятиями "мнимое число" и "комплексное число".

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 10:43 
Alexandr Gavrichenko
$\tau$ - собственное время, а $t$ - временная координата. Это не одно и то же. Все нормально.

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 12:08 
sergey zhukov в сообщении #1656743 писал(а):
$\tau$ - собственное время, а $t$ - временная координата. Это не одно и то же. Все нормально.

sergey zhukov
Да, Вы правы.

Cos(x-pi/2)
Прошу прощения. Я перепутал символы.

 
 
 
 Re: Как направить длину вектора?
Сообщение30.09.2024, 16:36 
Евгений Машеров в сообщении #1656742 писал(а):
Ещё раз. Прошу Вас уяснить разницу между понятиями "мнимое число" и "комплексное число".

Объясните, пожалуйста, эту разницу.

 
 
 [ Сообщений: 79 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group