2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 7  След.
 
 Обратная задача теории вероятностей
Сообщение10.08.2024, 11:39 
Можно ли найти решение обратной задачи теории вероятностей в следующей постановке?
Пусть даны случайные события $A, B, C, \dots $ и известна вероятность событий, выраженных формулами исчисления высказываний с пропозициональными переменными $A, B, C, \dots $. Можно ли по этим данным вычислить вероятность событий $A, B, C, \dots $?
Например, даны две переменные $A$ и $B$ и известны вероятности событий $P(A \supset B)$ и $P(A \wedge B)$. Необходимо вычислить $P(A)$ и $P(B)$.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 11:43 
Аватара пользователя
А что за событие $A \supset B$ ?

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 11:48 
provincialka в сообщении #1649124 писал(а):
А что за событие $A \supset B$ ?

Это знак импликации. Грубо говоря, формула означает "Если A, то B".

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 11:57 
Аватара пользователя
И при чем тут событие? Например, пусть $A$ - "карта треф"; $B$ - "карта с картинкой". Чему будет равно $A\subset B$?

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 11:59 
Зависит от того, какие именно формулы даны с известными вероятностями. Критерий такой: через них и логические связки должны выражаться все пропозициональные формулы. В примере вычислить $P(B)$ нельзя.

(Оффтоп)

BorisK в сообщении #1649125 писал(а):
Это знак импликации. Грубо говоря, формула означает "Если A, то B".

Никогда не понимал такое обозначение. Тут $A \supset B$ является универсумом тогда и только тогда, когда $A \subseteq B$ как множества.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 12:16 
provincialka в сообщении #1649128 писал(а):
И при чем тут событие? Например, пусть $A$ - "карта треф"; $B$ - "карта с картинкой". Чему будет равно $A\subset B$?

Если кому-то непонятно использование логически формул в качестве событий, то попробую пояснить это на следующем примере. Пусть бросаются 2 монеты, причем вероятность выпадения орла и решки неизвестны. Пусть выпадение орла означает события $A$ и $B$, а выпадение решки – события $\neg A$ и $\neg B$. Тогда событие $P(A \supset B)$ означает, что при бросании двух монет не учитывается случай, когда в первой монете выпадает орел, а во второй – решка. А событие $P(A \wedge B)$ означает, что при бросании двух монет учитывается только случай, когда обе монеты показали орла.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 12:18 
Аватара пользователя

(Оффтоп)

dgwuqtj в сообщении #1649129 писал(а):
Никогда не понимал такое обозначение.

И мне очень не нравится :-( Но Мендельсон его использует. Клини тоже.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 13:51 
Аватара пользователя
BorisK в сообщении #1649136 писал(а):
Тогда событие $P(A \supset B)$ означает, что при бросании двух монет не учитывается случай, когда в первой монете выпадает орел, а во второй – решка.


Это очень частный случай опыта. Кстати, что тут у вас является пространством элементарных исходов? Одиночные броски? Пары?

И как будет выглядеть эта импликация в примере с картой, вытянутой из колоды, который я вам предложила?

Мне кажется, вы сами придумали какое-то обозначение для какой-то частной задачи. Лучше использовать общепринятые обозначения или описывать события словами.

Возможно, под $(A \supset B)$ вы понимаете "$A$ или не $B$"?

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 14:07 
provincialka в сообщении #1649152 писал(а):
[
Цитата:
Возможно, под $(A \supset B)$ вы понимаете "$A$ или не $B$"?

Под $(A \supset B)$ в математической логике понимается " не $A$ или $B$".
По-моему, приведенная выше задача с двумя переменными решается даже в тех случаях, когда вероятность выпадения орла в разных «неправильных» монетах разная. Но решение возможно не при любых значениях вероятностей сложных событий. Можно ли определить необходимые условия решения данной задачи?

-- 10.08.2024, 14:10 --

Забыл сказать, что пространство элементарных событий пары бросков, причем, как уже было сказано, вероятность выпадения орла в разных монетах не обязательно должна быть одинаковой.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 14:13 
dgwuqtj в сообщении #1649129 писал(а):
Критерий такой: через них и логические связки должны выражаться все пропозициональные формулы.

Это я ерунду какую-то написал.

Всегда можно посчитать $P(A)$, а вот $P(B)$ однозначно определено только при $P(A \cap B) = P(A \supset B)$.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 14:21 
dgwuqtj в сообщении #1649161 писал(а):
dgwuqtj в сообщении #1649129 писал(а):
Критерий такой: через них и логические связки должны выражаться все пропозициональные формулы.

Это я ерунду какую-то написал.

Всегда можно посчитать $P(A)$, а вот $P(B)$ однозначно определено только при $P(A \cap B) = P(A \supset B)$.


Вместо $P(A \supset B)$ можно написать $P(\neg A \vee B)$.
И $B$ тоже можно вычислить без всякого равенства. Готовлю алгоритм решения.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 14:25 
Вот вам задача: для любых чисел $0 \leq x \leq y \leq z \leq 1$ существует конечное вероятностное пространство с событиями $A$ и $B$ такими, что $P(A \cap B) = x$, $P(B) = y$, $P(A \supset B) = z$.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 15:22 
dgwuqtj в сообщении #1649166 писал(а):
Вот вам задача: для любых чисел $0 \leq x \leq y \leq z \leq 1$ существует конечное вероятностное пространство с событиями $A$ и $B$ такими, что $P(A \cap B) = x$, $P(B) = y$, $P(A \supset B) = z$.

Непонятно, в чем задача. Если для «любых», то ответ отрицательный. Но, по-видимому, можно вычислить необходимые условия для переменных $x, y, z$, при которых эти равенства выполняются. Даже больше скажу. Если заданы $x, z$, то при определенных условиях можно получить точные значения $P(A)$ и $P(B)$.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 15:26 
Задача в том, чтобы построить пространство с событиями. Оно всегда существует. Даже с 4 элементарными исходами.

 
 
 
 Re: Обратная задача теории вероятностей
Сообщение10.08.2024, 15:33 
dgwuqtj в сообщении #1649180 писал(а):
Задача в том, чтобы построить пространство с событиями. Оно всегда существует. Даже с 4 элементарными исходами.

Извините, но мне непонятно, что в данном случае означает "построить пространство с событиями".

 
 
 [ Сообщений: 97 ]  На страницу 1, 2, 3, 4, 5 ... 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group