2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 08:36 
Аватара пользователя
transcendent в сообщении #1637338 писал(а):
мои Примеры были приведены только для того, чтобы показать, что ФЭ работают не только для целых m и n. Или, всё-таки, я что-то неправильно ответил?

В формуле Евклида $m$ и $n$ - натуральные, то есть целые и положительные просто по определению чисел Евклида.

-- Пт апр 26, 2024 07:44:00 --

transcendent в сообщении #1637338 писал(а):
а почему нельзя предположить, что целые $m=x+y$ и $n=z=(x^p+y^p)^{1/p}$ не могут использоваться в ФЭ

Почему не могут? Могут! Например для $p=2$.
А для других натуральных $p$ не существует формул, аналогичных формле Эвклида.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 12:12 
Уважаемый Супермодератор Ende, я понял и буду стараться придерживаться Вашего указания
Ende в сообщении #1637343 писал(а):
Это обязательное требование. Если цитируете, то цитируйте как надо.
Единственное, что я пока имею проблему, если что-то, требуемое к цитированию, "убегает" вместе с соответствующей страницей. Но, но ничего страшного, я постараюсь как-нибудь "методом тыка" решить эту проблему. Если, конечно, вы меня не забаните ещё ДО этих "тренировок" с диагнозом "невменяемость" да ещё уисиленным каким-нибудь дополнительным эпитетом.:) Но, и здесь я постараюсь не давать поводов для этого, переходя сейчас к моим ответам на вопросы или комментарии, которые мне были адресованы за, примерно, 12 часов...
Уважаемый mihaild, В ответ на Ваше замечание
mihaild в сообщении #1637348 писал(а):
Потому что тема выглядит так, как будто вы просите объяснить вам, что неправильно в вашем доказательстве. Если не просите, то зачем вы выложили текст в первом посте?
я хотел бы сказать, что мне , возможно, было бы лучше дать мои Примеры и сопроводить их моими вопросами. Но, теперь, уж, как есть. Прощайте, если возможно. В ответ на мой вопрос "Вы могли бы ответить-что НЕнового в моих ПРИМЕРах?" Вы пишете
mihaild в сообщении #1637348 писал(а):
Понятия не имею. Там какой-то набор чисел который непонятно чему должен соответствовать. Если хотите чтобы кто-то посмотрел на них - напишите текст так, чтобы в нем не было ошибок перед этими "примерами", и при этом было понятно, примерами чего они собственно являются.
. Говоря об "ошибке", как я понял, Вы имеете ввиду указание в моём тексте на примитивные Пифагоровы Тройки, т.е. , Вы считаете, что там должна стоять фраза о непримитивных Пифагоровых Тройках. Если получится, я постараюсь дать пояснения ниже (хотя , мы это уже и обсудили 2 или 3 раза)-при ответе уважаемому Лукомор. Здесь я только хотел бы добаить к первоначальному моему тексту некоторые дополнительные замечания об m и n. А именно, мы в состоянии идти "вверх" и "вниз", имея/определяя следующие или предыдущие значения m и n. Оставляя пока из рассмотрения (надеюсь, временно) примеры 2,3 и 4 с p-адическими целыми, давайте посмотрим ещё раз на Пример1 с прямоугольными треугольниками. Для первого треугольника имеются следующие значения m и n , которые мы обозначим индексом "middle": $m_{middle}=3.949978$ и $n_{middle}=1.265830$. Идти "вниз" означает найти в домене R такие значения $m_{previous}$ и $n_{previos}$, которые давали бы нам $m_{middle}$ и $n_{middle}$ , при соблюдении правил для формул Эвклида, ФЭ, исключая требование принадлежности всех представленных чисел только к множеству N. Действительно, всё изобртетено и открыто далеко до нас и по известным формулам мы находим, что $m_{previous}=2.283814...$ и $n_{previous}=1.638337...$. Элементарная проверка, как это всегда делалось бы для ФЭ при $Epsilon=1/2$: $m_{middle}=(1/2)\cdot(2.283814...^2+1.638337...^2)=3.949978...$, $n_{middle}=(1/2)\cdot(2.283814...^2-1.638337...^2)=1.265830...$. Т.е., мы получили, двигаясь "снизу", значения $m_{middle}$ и $n_{middle}$, которые использовались для расчётов сторон первого треугольника в Примере 1. Точно так же можно идти "вверх", но для расчётов брать известные из Примера 1 длины сторон треугольника виде $m_{subsequent}=сумма длин катетов$ и $n_{subsequent}=длина гипотенузы$, например. Но, это уже детали. Что важного, на мой взгляд, и что нового? Расширение области применения ФЭ в части чисел m и n от целых чисел, до иррациональных чисел, домен R. Попробуйте , пожалуйста, проверить все эти элементарные расчёты. Ведь, это не сложно, а просто.
Учитывая сказанное сейчас и мою просьбу простить меня за моё многословие в иначальном моём посте, я , конечно, понимаю и предлагаю весь мой вопрос для консультаций разделить на 2 вопроса-в соответсвии с выводами, которые были даны мной. А именно, Вопрос №1: Что будет/было бы, если числа m и n в Формулах Эвклида принадлежат к R, т.е., это не только целые? И Вопрос №2: Приняв во внимание возможность существования и использования иррациональных m и n (что было показано мной в течение этих 3 дней), как нам (точнее, мне) миновать тупик для доказательства ВТФ, который неизбежно возникает при этом?- см. все мои уравнения в моём исходном посте (никуда не могу деться, чтоб снова не вспомнить о нём....)? Основное уравнение Вы процитировали
mihaild в сообщении #1637348 писал(а):
целые $m=x+y$ и $n=z=(x^p+y^p)^{1/p}$ не могут использоваться в ФЭ
. Теперь постараюсь дать ответ на Ваш вопрос
mihaild в сообщении #1637348 писал(а):
Что вообще значит "числа не могут использоваться в формулах Евклида"?
. Этот ответ также касается вопросов от уважаемого эксперта Лукомор, которые даны им ниже. Какой бы нечитабельный ни был мой изначальных пост, но, насколько я помню, я приводил примеры-почему целые
mihaild в сообщении #1637348 писал(а):
"числа не могут использоваться в формулах Евклида"
. Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае. Единственным вариантом, когда Вы можете получать целые m и n , используя модифицированный мной ФЭ,
mihaild в сообщении #1637348 писал(а):
$m=x+y$ и $n=z=(x^p+y^p)^{1/p}$
есть только условие, когда x, y, z являются Пифагоровыми Тройками при $p=2$. При том же условии $p=2$, любые иные ЦЕЛЫЕ x и y не дают возможности иметь целыми m и n одновременно. Если же $p>2$, то целых x, y, z (одновременно) не существует, вообще. Т.е., резюмируя и выделяя главное: есть всего 2 условия-1-ое условие, это, когда есть Пифгоровы Тройки при $p=2$; и 2-ое условие, это, когда $p>2$ с иррациональным произведением $mn$.
Принимая во внимание только что сказанное и выделенное жирным, дискуссия о делимости $z^3$ на $x+y$ и, соответственно,-примитивные ли Пифагоровы Тройки, или они непримитивные,-теряет всякий смысл, т.к., для $p>2$ говорить о любых Пифагоровых Тройках говорить невозможно.

-- 26.04.2024, 12:16 --

Уважаемый Лукомор
Лукомор в сообщении #1637362 писал(а):
В формуле Евклида $m$ и $n$ - натуральные, то есть целые и положительные просто по определению чисел Евклида.
-на этот вопрос я только что ответил выше. Одна просьбы, если это возможно. Предлагаю взаимно-если кто-то говорит о любом "определении", то он тут же даёт ссылку на это определение или цитирует его. если это невозможно по любым причинам, то он указывает прямым текстом, мол, "не могу" (пока, сейчас, 2 дня и т.д...)
Лукомор в сообщении #1637362 писал(а):
Почему не могут? Могут! Например для $p=2$.
-Согласен. Конечно.
Лукомор в сообщении #1637362 писал(а):
А для других натуральных $p$ не существует формул, аналогичных формле Эвклида.
-Я только написал подробнее выше.

-- 26.04.2024, 12:20 --

Уважаемый ivanovbp, Используя все законные способы, где и когда я мог бы почитать Ваше доказательство, о котором Вы говорите здесь:
ivanovbp в сообщении #1637281 писал(а):
2. Касательно собственно ВТФ: доказательство должно быть действительно ПРОСТЫМ, как и говорил старик Ферма, а не занимать сто с лишним страниц текста с формулами (доказательство Уайлса). Я когда-то привёл такое - ареопаг "заслуженных" загнал его в Пургаторий, но главный простой постулат моего доказательства никто из них не заметил, а потому и не опроверг.

Спасибо.
С завтрашнего утра я и не читатель, и не писатель. Стану читателем только с вечера, 27-го апреля. И где-то до первых майских дней буду оставаться только читателем.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 12:51 
Аватара пользователя
transcendent в сообщении #1637370 писал(а):
Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае
Докажите.
(Это сейчас ключевой момент. На остальное отвлекаться смысла нет)

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 13:06 
mihaild в сообщении #1637371 писал(а):
Докажите.
(Это сейчас ключевой момент. На остальное отвлекаться смысла нет)
-Докажите или покажите? Шаг4, (20), (21), (22).
mihaild в сообщении #1637371 писал(а):
На остальное отвлекаться смысла нет
-Почему? Проверьте, пожалуйста, мои элементарные расчёты выше. Разве, это сложно? (20),(21), (22)-это, конечно, "покажите", а не "докажите".
Но, доказательство лежит в той же бинарной логике: или есть треугольники с целыми сторонами (соответствия Пифагоровым Тройкам), или есть треугольники со сторонами, длины которых выражены числами, прозведением которых $xyz$, принадлежит R, т.е., иррациональное число. Что тут нужно (доказывать)ещё? Ничего. Простите, но, я ещё раз, хотел бы напомнить, что я пришёл за консультацией. Поэтому, не могу понять что такое
mihaild в сообщении #1637371 писал(а):
ключевой момент
? Ключевой момент-для чего? Вы можете дать мне консультацию по двум моим вопросам: 1) Правильны ли все мои расчёты с нецелыми m и n (о моём праве или бесправии делать такие допущения я и не спрашиваю, поскольку допущения о нецелых m и n сделаны мной, а расчёты делает тупая машина по заданным мной алгоритмам, которые известны задолго до нас...) и 2) Как мне выйти из фатального тупика, когда пытаюсь доказать ВТФ методом "от противного", но неизбежно и неотвратимо натыкаюсь на запрет, который есть следствие пункта 1)?

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 18:03 
Аватара пользователя
transcendent в сообщении #1637370 писал(а):
Предлагаю взаимно-если кто-то говорит о любом "определении", то он тут же даёт ссылку на это определение или цитирует его.

Цитата:
Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел
$(x,\;y,\;z)$ удовлетворяющих следующему однородному квадратному уравнению
$ x^{2}+y^{2}=z^{2}$
При этом числа, образующие пифагорову тройку, называются пифагоровыми числами.

Это Википедия, если что...
Цитата:
Формула Евклида является основным средством построения пифагоровых троек. Согласно ей для любой пары натуральных чисел
$ m $ и $ n $
$ m>n $
целые числа
$ a=m^{2}-n^{2} $, $ b=2mn $, $ c=m^{2}+n^{2} $
образуют пифагорову тройку.

Там же...

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 18:07 
Уважаемый Лукомор, Да, конечно, спасибо за пунктуальность. Это было бы всегда удобно, даже, с точки зрения быстроты дать соответствующую ссылку. Ещё раз, спасибо, что приняли моё предложение.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 18:58 
Аватара пользователя
transcendent в сообщении #1637380 писал(а):
спасибо, что приняли моё предложение.

У меня есть еще одно предложение, от которого Вы не сможете отказаться!
:shock:
Возьмите пифагоровую тройку $(5, 12, 13)$,
и продемонстрируйте нам тот же ловкий фокус, который Вы проделали с тройкой
$3, 4, 5$ в первом сообщении...

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 19:11 
Аватара пользователя
transcendent в сообщении #1637373 писал(а):
Докажите или покажите? Шаг4
Докажите. В шаге 4 это утверждение только (немного криво) сформулировано, но не доказано, и даже попыток доказательства нет.
transcendent в сообщении #1637373 писал(а):
Что тут нужно (доказывать)ещё?
Вот это:
transcendent в сообщении #1637370 писал(а):
Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае
Это утверждение очевидно равносильно ВТФ.
transcendent в сообщении #1637373 писал(а):
Ключевой момент-для чего?
Для того, чтобы вы поняли, где у вас ошибка.
transcendent в сообщении #1637373 писал(а):
Вы можете дать мне консультацию по двум моим вопросам
Нет, не могу, потому что эти расчёты предварены недоказанными или неверными утверждениями, а потому проверять в них нечего.

При чтении математического текста смысла продолжать дальше первой ошибки нет. На ошибку (не уверен что первую, но идущую до части, о которой вы спрашиваете) я вам указал.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 20:30 
Уважаемый Лукомор, Вы пишете
Лукомор в сообщении #1637384 писал(а):
Возьмите пифагоровую тройку $(5, 12, 13)$,
и продемонстрируйте нам тот же ловкий фокус, который Вы проделали с тройкой
$3, 4, 5$ в первом сообщении...
-правильно ли я понял Вас, что Вы хотели сказать именно то, что я должен взять Пифагорову Тройку $x=5$, $y=12$, $z=13$ и написать уравнения $m=5+12=17$ и $n=z=(5^2+12^2)^{1/2}=(25+144)^{1/2}=13$, чтобы потом показать следующую Пифагорову тройку, которая сконструировна из заданной Вами исходной Пифагоровой Тройки? Т.е., мы получили m=17, n=13. Ну,отсюда же легко всё найти, учитывая , что полученные m и n есть оба нечётные. Следовательно, $Epsilon=1/2$ и мы имеем для следующей Пифагоровой Тройки, X,Y,Z: $X=Epsilon\cdot(m^{2}-n^{2})=(1/2)\cdot(17^{2}-13^{2})=60$, $Y=Epsilon\cdotmn=17\cdot13=221$, $Z=Epsilon\cdot(m^{2}+n^{2})=(1/2)\cdot(17^{2}+13^{2})=229$. Т.е., мы получили новую Пифагорову Тройку $X=60$, $Y=221$, $Z=229$. Проверка-элементарна. Этот вопрос почему-то насторожил меня, не подвох ли какой?.. Что тут Вам не нравится? Ах, возможно, я не правильно понял Ваш вопрос и слово "фокус"? Это уже не моя вина, ведь, мы знаем, что в математике, если что-то не написано, то этого не существует, не так ли?:) Но, хорошо, думаю дальше. Возможно, Вы хотели, чтоб я пошёл не "вверх", а "вниз"? Т.е., Вы хотели бы, чтобы я к указанной Вами Пифагоровой Тройки 5, 12, 13 нашёл m и n и именно для этих m и n "спустился" "вниз"? Хорошо, давайте попробуем. Обозначим m и n указанной Вами Пифагоровой Тройки индексом "middle" , рассчитывая их стандартно. Мы нашли, что $m_{middle}=5$ и $n_{middle}=1$. Действительно, $y=Epsilon\cdot(5^{2}-1^{2})=(1/2)\cdot(25-1)=12$, $x=2\cdot(Epsilon)\cdot5\cdot1=5$, $z=Epsilon\cdot(5^{2}+1^{2})=(1/2)\cdot(25+1)=13$-"Ваша" Пифагорова тройка получена, следовательно, m и n найдены правильно и мы работаем с ними дальше, чтобы найти m и n с индексом "previous". Стандартный метод расчёта даёт следующие значения искомых величин, одно из которых есть иррациональное число: $m_{previous}=2.449490...$, $n_{previous}=2$.
Элементарная проверка по ФЭ даёт значения $m_{middle}=(1/2)\cdot(2.449490...^{2}+2^{2})=(1/2)\cdot10=5$ и $n_{middle}=(1/2)\cdot(2.449490...^{2}-2^{2})=(1/2)\cdot2=1$, Q.E.D.
Правильно я всё сделал?
Лучше, посмотрите на другое, а именно , например, на представление элементарного Пифагорового выражения $3^{2}+4^{2}=5^{2}$, как уравнение ВТФ для степени, например, 4, через p-адические целые в $Z_{109}$. При этом, все числа, которые в десятичной базе есть меньше, чем 109, являются цифрами в базе 109, десятичное число 109 в базе 109, естественно, мы запишем, как $10_{109}$. Далее мы не будем указывать индекс 109 к p-адическим корням, просто, удерживая его в уме, по умолчанию. Я даю только по одному корню, a, b, c, для уравнения ВТФ $a^{4}+b^{4}=c^{4}$, которое соответствует Пифагорову выражению $A^{2}+B^{2}=C^{2}$, где $A=3$, $B=4$, $C=5$. Цифры базы 109, выраженные десятичными числами будут отделены друг от друга такими скобками < и >, чтобы избежать путаницы-пробелы мне не удалось найти-как правильно сделать.... Итак, мы имеем следующие корни: $a=3^{1/2}=...<60> <2> <49>$, $b=4^{1/2}=...(<108>) <107>$, $5^{1/2}=...<97> <57> <21>$. Здесь тоже можно находить m и n стандартным методом, но я уже устал, написал не первый пост, да и близорукие глаза тоже нуждаются в отдыхе.
Можно смотреть примеры, какие угодно. Например, для Пифагоровой Тройки 11, 60, 61 в $Z_{137}$, но, мне кажется, что я дал уже достаточно информации. Я просил консультации, но, в итоге, я не получил консультации и, наоборот, -мне приходится писать здесь больше всех. Мой вопрос для необходимой консультации выделен жирным шрифтом парой постов выше...
На этом, пока всё. С завтрашнего дня я есть исключительно читатель. До начала мая. Если всё написанное-интересно, то обсуждайте. если это чушь-так и прошу написать. Это тоже будет консультация. Спасибо за внимание!
П.С. Ваш пост, уважаемый mihaild, я только сейчас увидел, в 20.31.-непосредственно после отправки этого моего ответа. Видимо, мы друг друга не поняли и всё идёт к закрытию этой дискуссии, как минимум...Я пока больше не могу писать. Консультацию я не получил, но, всё равно, извините меня-я ответил на Ваши вопросы, но, как я понимаю-они повторяются? если эту дискуссию не уничтожат, тоя смогу вернуться к ней только в начале мая.
Всего наилучшего, всех с праздниками!

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение26.04.2024, 21:42 
transcendent в сообщении #1637388 писал(а):
$Y=Epsilon\cdotmn=17\cdot13=221$,

Надо читать так: $Y=2\cdot(Epsilon)\cdot17\cdot13=221$.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение29.04.2024, 18:14 
Аватара пользователя
transcendent в сообщении #1637388 писал(а):
Консультацию я не получил
Получили: вопрос сформулирован некорректно.
transcendent в сообщении #1637388 писал(а):
я ответил на Ваши вопросы
Нет.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение01.05.2024, 10:31 
Уважаемый mihaild,
Несмотря на то, что Вы не дали определение "корректного вопроса" , я всё же, постараюсь напомнить, что я обращался за консультацией: "Нужна консультация об ошибках/”дырах"/надуманных заявлениях".
Понятно, что слово "дыры" относится к какому-то потенциальному "доказательству" или доказательству (без кавычек) и может именно это слово вызвало Ваше недоумение (или недопонимание), которое было выражено Вами выше. Формулировка Выводов тоже больше носит характер вопросов, на мой взгляд. Хотя, конечно, со стороны виднее (Вам и другим) и я должен принять эту критику с благодарностью.
Но, несмотря на вышеупомянутые недостатки и другие кривые (по мнению пишущих) моменты, которые посетители отмечали, я хотел бы здесь подчеркнуть ещё раз: я прошу дать критику по существу.
Пока нет критики по существу, ведь? Я показал, см. Вывод 1 в самом, что НЕЦЕЛЫЕ m и n будут давать НЕЦЕЛЫЕ тройки чисел, которые соответствуют НЕЦЕЛЫМ длинам сторон прямоугольного треугольника. Т.е., я говорю, что любой может сделать соответствующие подстановки (НЕЦЕЛЫЕ...) в этой цитате и легко понять Примеры и мои проблемы при попытке доказать ВТФ методом от противного. Т.е., всё то, что мной показаны не один раз в этой ветке дискуссии, которая была начата мной 23 апреля 2024:
Лукомор в сообщении #1637379 писал(а):
Цитата:

Формула Евклида является основным средством построения пифагоровых троек. Согласно ей для любой пары натуральных чисел
$ m $ и $ n $
$ m>n $
целые числа
$ a=m^{2}-n^{2} $, $ b=2mn $, $ c=m^{2}+n^{2} $
образуют пифагорову тройку.
. Это медицинский факт. Множество Примеров показывают это. Дайте, пожалуйста, конструктивную критику. Или согласие, что формальных ошибок нет (ошибок в элементарной математике нет)
Здесь н и ч е г о доказывать не нужно, всё доказано до нас. Или, если Вы считаете по иному-прошу написать ЧТО ещё нужно доказывать.
Теперь о Выводе 2 и возможных логических ошибках или их отсутствии. В Шаге 6 написано:

-- 01.05.2024, 10:31 --

transcendent в сообщении #1637141 писал(а):
т.е. бинарная логика: только две возможности существуют, когда x и y-катеты от Пифагоровых Троек в уравнениях ,типа, (10), при $p=2$, ; или любые x и y при p больше или равном 2. Тогда проблема исчезает, как таковая. Возможно, это тоже «дыра», но интересно прочитать её обоснование.


-- 01.05.2024, 10:37 --

Уважаемый mihaild, Пожалуйста, дайте критику этого положения о "бинарной логике"-почему я могу или НЕ могу писать это? Здесь я говорю о Вывод 2. Здесь речь идёт именно о и только логике.Какая здесь скрыта ошибка и как она может быть проявлена?
Короче говоря, прояснение математическими и логическими заключениями эти двух Вопросов я мог бы принять как консультацию, с Вашего позволения. Если Вашего позволения нет в таком подходе, то, к сожалению, мы можем увлечься чем-то похожим на "ловлю мышей"-отвлечение на малозначащие и малозначимые вопросы- или чего-то ещё. Но, я уверен, что Вы и другие эксперты могут дать конструктивную критику.
УважаемыйЛукомор не дал определения слова "фокус":
Лукомор в сообщении #1637384 писал(а):
Возьмите пифагоровую тройку $(5, 12, 13)$,
и продемонстрируйте нам тот же ловкий фокус, который Вы проделали с тройкой
$3, 4, 5$ в первом сообщении...
. В меру моего понимания этого слова, -но может, он имел в виду слово "трюк" или что-то ещё?- я дал мой ответ. Однако, комментариев не вижу-устроил ли мой ответ уважаемого Лукомор
. К сожалению...

-- 01.05.2024, 10:40 --

Уважваемый ivanovbp, Я ответил на Вашу критику и имел посланным Вам мой вопрос о возможности прочитать Вашу попытку Вашего доказательства для ФЛТ, но я не получил ответ. Поэтому, хотел бы спросить Вас ещё раз: где я могу прочитать Ваши материалы. Я боюсь, что моя проблема, с которой я столкнулся при попытке доказать ВТФ методом от противного, относится не только ко мне. Вы тоже используете метод получения противоречия?

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение01.05.2024, 11:45 
Аватара пользователя
transcendent в сообщении #1637695 писал(а):
Пока нет критики по существу, ведь?
Есть.
mihaild в сообщении #1637387 писал(а):
transcendent в сообщении #1637373 писал(а):
Что тут нужно (доказывать)ещё?
Вот это:
transcendent в сообщении #1637370 писал(а):
Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае

Если Вас это утверждение уже не интересует, то напишите отдельный самодостаточный текст, в котором есть то, что Вас интересует и нет недоказанных утверждений, которые Вас не интересуют.
transcendent в сообщении #1637695 писал(а):
Я показал, см. Вывод 1 в самом, что НЕЦЕЛЫЕ m и n будут давать НЕЦЕЛЫЕ тройки чисел, которые соответствуют НЕЦЕЛЫМ длинам сторон прямоугольного треугольника
Я не вижу, где Вы это "показали". Можете полностью сформулировать утверждение и процитировать доказательство, не делая перед этим каких-то ложных и недоказанных утверждений о ВТФ?
Если оно означает "при подстановке нецелых $m$, $n$ в формулы Евклида получаются нецелые $A, B, C$", то можете не трудиться: $m = 2\sqrt 2$, $n = \sqrt 2$ не целые и дают целые $A = 3$, $B = 4$, $C = 5$.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение01.05.2024, 17:15 
Уважаемый mihaild, Вы пишете:
mihaild в сообщении #1637698 писал(а):
Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае
Если Вас это утверждение уже не интересует, то напишите отдельный самодостаточный текст, в котором есть то, что Вас интересует и нет недоказанных утверждений, которые Вас не интересуют.
.
Но, как я написал в своём первоначальном посте (и повторял это не один раз), я руководствуюсь только этим тезисовм:
transcendent в сообщении #1637141 писал(а):
бинарная логика: только две возможности существуют, когда x и y-катеты от Пифагоровых Троек в уравнениях ,типа, (10), при $p=2$, ; или любые x и y при p больше или равном 2. Тогда проблема исчезает, как таковая.
. Мои сомнения относительно метода получения противоречия при доказательстве ВТФ построены на этом. Вы хотите их развеять, призвав меня доказать, что эта моя цитата неверна-
mihaild в сообщении #1637698 писал(а):
Подставьте любые x и y, которые не явлются числами/катетами из Пифагоровых Троек даже при $p=2$, вы не получите целых m и n даже в этом случае
? Т.е., моя формула, например, для длины катета B содержит недоказанное утверждение, что только Пифагоровы Тройки при p=2 дают целое число для длины этого катета B: $m_{middle}=2\cdot(Epsilon)\cdot(x+y)\cdot(x^p+y^p)^{1/p}$ ( можно написать уравнения и для второго катета и гипотенузы с тем же "недоказанным" утвержением...)? Правильно ли я Вас понял? Если правильно, то Вы (вольно или невольно) хотите заставить меня идти по точно такому же кругу, как и в случае ВТФ-напоминаю, что пока мы говорим о просто Диофантовом уравнении с $p=2$. "Моя" "бинарная логика" говорит о том, что есть только два возможных случая, а именно Пифагоровы тройки и "не"-Пифагоровы Тройки. Вторые есть те, которые имеют, по крайней мере, одно иррациональное число. Это очевидно. В представленном мной Диофантовом уравнении с $p=2$ выражение $(x^p+y^p)^{1/2}$ должно иметь полный квадрат, чтобы иметь целое число, как результат извлечения корня второй степени. Всё остальное-иррациональные. Если мы говорим о $p> или =2$, всё ещё проще- см. Шаг 6 и/или цитату из него выше. Кстати, в этом смысле, я признаю, что процитированная Вами моя фраза неполна и, следовательно, неверна:
mihaild в сообщении #1637698 писал(а):
Я показал, см. Вывод 1 в самом, что НЕЦЕЛЫЕ m и n будут давать НЕЦЕЛЫЕ тройки чисел, которые соответствуют НЕЦЕЛЫМ длинам сторон прямоугольного треугольника Я не вижу, где Вы это "показали".
. Я прошу ещё раз считать правильной только мои суждения о "бинарной логике" в первом моём комментарии. Продолжая эти Ваши замечания, также отмечу истинность этого Вашего высказывания:
mihaild в сообщении #1637698 писал(а):
Если оно означает "при подстановке нецелых $m$, $n$ в формулы Евклида получаются нецелые $A, B, C$", то можете не трудиться: $m = 2\sqrt 2$, $n = \sqrt 2$ не целые и дают целые $A = 3$, $B = 4$, $C = 5$.
. Но, попутно хочу обратить Ваше внимание, что мои примеры в первом моём посте тоже содержат по нескольку пар m и n, если Вы обратили внимание. Я знаю об этом- о чём Вы написали. Вне зависимости-поверите Вы мне сейчас или нет. Более того, я дополню-можно рассматривать и отрицательные m и n, если мы говорим, например, о домене R. Если перейти к p-адическим целым, мы часто не можем сказать что есть положительное или отрицательное (числа , связанные с мнимой 1, прежде всего, имею в виду), но я позволил себе дополнить список m и n, начатый мной и продолженный Вами, но уже в домене $Z_{7}$ для Пифагоровой Тройки $x=3$, $y=4$, $z=5$ для $Epsilon=1/2$: $m_{3 and 4}=(z+x)^{1/2}=...35426_{7} или $или ...31241_{7}$; $и $n_{3 and 4}=B/m_{3 and 4}=...16213_{7} $. Второе возможное значение: $или ...50454_{7}$. Какое из них отрицательное, какое положительное-я не буду. Любой может сделать проверку представленных значений стандартным способом. В связи с этим- "старый вопрос", но уже в новой обёртке: Вы признаёте новизну моего предложения применять нецелые m и n? Если "да", то можно ли это понятно написать здесь, чтобы я , если что, мог это цитировать? Разобравшись $p=2$, можно двигаься в сторону ВТФ.
П.С. Кстати, если подставить предложенные Вами значения $m=2\cdot 2^{1/2}$ и $n=2^{1/2}$ в мою формулу для катета B, то получить целое невозможно.
П.П.С. Также, ничто не может помешать и никто не может запретить проделывать вышеописанные "трюки" для m и n при $Epsilon=1$.

 
 
 
 Re: Нужна консультация об ошибках/”дырах"/надуманных заявлениях
Сообщение01.05.2024, 18:21 
transcendent в сообщении #1637722 писал(а):
П.С. Кстати, если подставить предложенные Вами значения $m=2\cdot 2^{1/2}$ и $n=2^{1/2}$ в мою формулу для катета B, то получить целое невозможно.
-имеется в виду, если $x=2\cdot2^{1/2}$ и $y=2^{1/2}$-рассматривая эти числа, как катеты.

 
 
 [ Сообщений: 86 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group