2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Многомерные дробно-линейных преобразования
Сообщение29.12.2023, 07:03 
Заслуженный участник
Аватара пользователя


03/06/08
2191
МО
Видимо, речь о проективной группе (грубо говоря, линейная группа, но в однородных координатах). Типа такого post1302424.html#p1302424
pan555
Так Вас, все-таки, что интересует - кривые, диффур или группа?

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение29.12.2023, 09:53 
Заслуженный участник


13/12/05
4521
pan555 в сообщении #1624146 писал(а):
Да, так выглядят диф.уравнения кривых с постоянными кривизнами в сопутствующей системе координат( так у Рашевского указано).
Разница для евклидова и псевдоевклидова пространства только в некоторых знаках.
$$
\begin{cases}
\frac{dx}{ds} = Ay,\\
\frac{dy}{ds} = -Ax+ Bz,\\
\frac{dz}{ds} = -By + Ct,\\
\frac{dt}{ds} = Cz,
\end{cases}
$$
где $A, B, C$ константы

Только здесь $x, y, z, t$ -- вектора репера Френе. Думаю, можно записать, как эти уравнения преобразуются при каком-то преобразовании (бесконечно малом преобразовании) исходных координат. В принципе это упражнение по дифференциальному исчислению.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 10:34 


05/09/22
25
Любое дробно-линейное отображение может быть представлено в виде комбинации сдвигов, инверсий, поворотов и растяжений. Это доказывается просто — произвольное отображение $f(z)=\frac{az+b}{cz+d}$ разложимо в суперпозицию четырёх функций:
$
f(z)=f_4(f_3(f_2(f_1(z)))),
где
\begin{matrix}f_1(z)&=&z+\dfrac{d}{c},\\f_2(z)&=&\dfrac{1}{z},\\f_3(z)&=&-\dfrac{ad-bc}{c^2}z,\\f_4(z)&=&z+\dfrac{a}{c}.\end{matrix}
$
Это ответ на пост от dgwuqtj

-- 30.12.2023, 10:46 --

Для Padawan.
Вы правы, это в репере Френе,что меня и смущает.
У Аминова Ю.А"Дифф.геом. и топ.кривых" указан способ получения кривизн через производные кривых в стандартных координатах, в пространствах любой размерности,а не только в репере Френе.
Попробую рассчитать в них.
Вообще то есть большие подозрения у меня, что кривые постоянных кривизн инвариантны и относительно многомерных преобразований Мёбиуса, но это то же надо изучать.

-- 30.12.2023, 11:01 --

пианист в сообщении #1624263 писал(а):
Видимо, речь о проективной группе (грубо говоря, линейная группа, но в однородных координатах). Типа такого post1302424.html#p1302424
pan555
Так Вас, все-таки, что интересует - кривые, диффур или группа?

Всё, но по значимости сначала кривые, потом дифур и потом группа.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 11:55 
Заслуженный участник
Аватара пользователя


03/06/08
2191
МО
Можно просто "прикрутить" к системе то, чего там не хватает.
Типа, если бы речь шла про плоскость, то это бы были уравнения
$$
\begin{cases}
\frac{d\alpha}{ds} = k,\\
\frac{dx}{ds} = \cos (\alpha),\\
\frac{dy}{ds} = \sin (\alpha),
\end{cases}
$$
и искать, соответственно, симметрии "удлиненной" системы.
Преобразования иксов пишете как хочется, а для остальных в общем виде.
Для непрерывной группы будет проще, но дробнолинейные емнис непрерывную группу не образуют; но, впрочем, и так не сильно сложно. Вроде ;)

-- Сб дек 30, 2023 13:09:17 --

pan555 в сообщении #1624365 писал(а):
сначала кривые

Тогда, наверное, стоит начать с получения их описания в (по возможности) явном виде (если уже не).

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 13:09 


05/09/22
25
Что такое :"дробнолинейные емнис" ?

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 16:25 


07/08/23
467
pan555 в сообщении #1624365 писал(а):
Любое дробно-линейное отображение может быть представлено в виде комбинации сдвигов, инверсий, поворотов и растяжений.

У вас какая-то путаница, это в одномерном случае так. В большей размерности инверсии не являются дробно-линейными преобразованиями. Если вы имели в виду, что это преобразования сферы Римана $\mathbb P^1_{\mathbb C}$, то
1) непонятно, что имеется в виду в большей размерности;
2) инверсия задаётся формулой $z \mapsto -1/\overline z$, так что надо ещё сопряжение добавлять.

-- 30.12.2023, 16:28 --

пианист в сообщении #1624377 писал(а):
Для непрерывной группы будет проще, но дробнолинейные емнис непрерывную группу не образуют; но, впрочем, и так не сильно сложно. Вроде ;)

Проективные преобразования в любой размерности $n$ образуют группу Ли $\mathrm{PGL}(n + 1, \mathbb R)$, у неё одна компонента связности при чётных $n$ и две при нечётных $n$. Базис её алгебры Ли известен, так что при желании действительно можно считать вручную. Но по идее проще сначала написать явные уравнения кривых постоянных кривизн и непосредственно проверить, что они не сохраняются.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 17:56 
Заслуженный участник
Аватара пользователя


03/06/08
2191
МО
dgwuqtj
Проективные да, вопрос, идет ли речь о них ;)
Если так, хорошо, это упростит расчеты.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 22:44 


05/09/22
25
dgwuqtj и пианист
Вы правы у меня путаница, я предположил, что в больших размерностях инверсии описываются то же дробно-линейных преобразованиями, что говорит о моем невежестве в этой области,признаю.
Поэтому мне стоит обратить внимание на многомерные преобразования Мёбиуса и исследовать их по интересующим меня вопросам, а именно:
1.Инвариантны ли кривые постоянных кривизн в евклидовом ( и псевдоевклидовым ) пространствах относительно преобразований Мёбиуса.
2.Есть ли в многомерных преобразованиях Мёбиуса неподвижные точки и сколько этих точек и зависит ли их количество от числа размерности пространства.
3.Сколько нужно точек, что бы определить кривую постоянных кривизн точно ?
Для прямой это 2-точки, для окружности это 3 точки, а сколько для Обыкновенной Винтовой Линии или кривых больших размерностей? Эти вопросы не решены, хотя для спирали (ОВЛ) ставились.

Это как минимум то, что мне надо изменить в своих исследованиях.
Чуть позже выпишу явный вид преобразований Мёбиуса в многомерном пространстве по той информации, что у меня есть и попрошу помощи в них разобраться.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 23:17 


07/08/23
467
Несколько странно, что вы рассматриваете преобразования Мёбиуса (порождаемые евклидовыми движениями и инверсиями относительно гиперсфер) а не преобразования Минковского (группу, порождённую движениями пространства Минковского и инверсиями относительно соответствующих гиперболоидов).

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 23:24 


05/09/22
25
dgwuqtj
А есть разница между группой Минковского и группой Лоренца ?

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 23:50 


07/08/23
467
pan555 в сообщении #1624505 писал(а):
А есть разница между группой Минковского и группой Лоренца ?

Я не знаю, как эта группа правильно называется. Есть пространство Минковского $\mathbb M^n$, это аффинное пространство с псевдоевклидовой метрикой. Если в нём зафиксировать начало координат, то есть рассматривать как векторное пространство, то его группа автоморфизмов - это группа Лоренца $\mathrm O(1, n - 1)$. Если начало координат не фиксировать, то добавятся параллельные переносы, получится группа Пуанкаре $\mathbb R^n \rtimes \mathrm O(1, n - 1)$.
А ещё есть отдельный термин плоскость Минковского, в многомерном случае аналог должен получаться добавлением бесконечно удалённого конуса к пространству Минковского. То есть это многомерный однополостный гиперболоид (в отличии от гиперсферы в случае пространства Мёбиуса). По идее его симметрии как круговой геометрии порождаются группой Пуанкаре и гиперболическими инверсиями, вот эту группу симметрий я и имел в виду.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение30.12.2023, 23:57 


05/09/22
25
dgwuqtj
Очень интересно и ,возможно, полезно в моих исследованиях.
Хорошо бы выяснить, как называется те преобразования, что вы имеете в виду, говоря о преобразованиях Минковского.
И можно ли выписать явный вид таких преобразований хотя бы в 4-х мерном случае и показать, чем они отличаются от преобразований Мёбиуса то же в 4-х мерном случае ?
Преобразования Мёбиуса в 4-х мерном случае скоро напишу.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение31.12.2023, 01:25 


05/09/22
25
В общем виде, при размерности 3 и более, преобразования Мёбиуса выглядят следующим образом,двумя способами :

$f(x)=b + \frac{A(x-a)}{|x+a|^2}$
$f(x)=b + A(x-a)$
где $ a,b \in R  $, A - ортогональная матрица.
Конкретный случай для 4-х мерного пространства распишу позже.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение31.12.2023, 01:45 


07/08/23
467
pan555 в сообщении #1624516 писал(а):
В общем виде, при размерности 3 и более, преобразования Мёбиуса выглядят следующим образом,двумя способами :
$f(x)=b + \frac{A(x-a)}{|x+a|^2}$
$f(x)=b + A(x-a)$

Ну тогда уж $|x - a|^2$ в знаменателе. Только это явно не все преобразования, среди них нет гомотетий и композиция преобразований первого вида непонятно какая. Но близко к правде.

Такие преобразования явно не сохраняют винтовые линии (переводят их в кривые с особенностями), так что они не сохраняют и кривые постоянных кривизн в размерностях начиная с 3 в евклидовом случае и с 4 в псевдоевклидовом. Для псевдоевклидовых пространств размерности 2 и 3 по идее можно руками посчитать, как устроены все кривые постоянных кривизн.

Что касается неподвижных точек, опять же вопрос в том, как вы их определяете. Можно перейти к комплексификации (тогда разница между евклидовой и псевдоевклидовой геометрией исчезает) и считать, скажем, количество неподвижных точек в общем положении. Это делается руками более-менее, но ответ может зависеть не только от размерности, но и от компоненты связности комплексной группы Ли (их две штуки, в одной вращения, во второй отражения и инверсии). С третьим вопросом тоже непонятно, вы можете хоть 10000 точек в $\mathbb E^3$ поставить, но если они не в достаточно общем положении, то через них может проходить много винтовых линий.

 Профиль  
                  
 
 Re: Многомерные дробно-линейных преобразования
Сообщение31.12.2023, 02:23 


05/09/22
25
dgwuqtj
Печалька .
Может быть, среди этих преобразований Мёбиуса есть подгруппа, относительно которой линии постоянных кривизн инвариантны ?
Мне казалось, раз преобразования Мёбиуса переводят окружности и гиперокружности в подобные окружности и гиперокружности, то и кривые постоянных кривизн в этот класс преобразований входят...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 43 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group