2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение03.12.2022, 23:25 
Аватара пользователя
ivanovbp в сообщении #1572046 писал(а):
Цитировать пока не научился, поэтому ответы довольно корявые по форме.
Вы за две почти недели не освоили элементарную процедуру, которую способен постичь ребёнок, осваивающий заодно горшок. И форумчане должны верить, что вы хоть в какой-то степени знаете математику? ivanovbp, на спор: вы можете привести (любое) доказательство теоремы Пифагора по памяти, не заглядывая в книги и в интернет? Поверю на слово.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 07:43 
Ещё раз - уж совсем в сжатой форме :
Веду его - доказательство - от противного, т.е полагаю, что можно найти целые числа a, b, c, которые удовлетворяют равенству ${a^3  + b^3  = c^3}$ (1)
Т.к. c>b, то его можно представить как c = b + n Тогда ${c^3  = b^3 + 3b^2n + 3bn^2  + n^3}$ и ${a^3  = c^3 - b^3 = 3b^2n + 3bn^2 + n^3}$
Выражение (2), очевидно, больше ${n^3}$ и, главное, кубический корень из него должен быть целым числом ( ведь корень третьей степени из а - целое число)
Зададимся вопросом:
Из какого числа, бОльшего чем ${n^3}$ , можно извлечь кубический корень? Например, из
2,5${n^3}$ ? из ${4n^3}$ или из ${9n^3}$ ? Нет, нельзя. Из ${15,625n^3}$ можно, но это будет дробь 2,5n , а нам нужно целое число
Корень третьей степени можно извлечь только из чисел, которые равны ${8n^3}$ ,
${27n^3}$ , затем ${64n^3}$ .и вообще......... ${k^3n^3}$ , где k - любое целое число
Возьму минимум ${8n^3}$
Имею уравнение ${3b^2n + 3bn^2   = 8n^3}$
После сокращения на n получим
${3b^2 + 3bn - 7n^2 = 0}$ откуда b = $\frac{- 3n  + \sqrt{93n^2}}{6}$ = $\frac{- 3n + 9,64326...}{6}$
Как видно, b в равенстве (1) не является целым числом, что и утверждал старик Ферма
Ясно ли я изложил? Или имеются вопросы?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 08:33 
Аватара пользователя
а чего это наш любимый Пьер старик?
Когда он развлекался величайшей теоремой, ему и 30 не было. Впрочем, может быть в вашем понимании старик —это даже нечто подростковое. Дайте же строгое определение этому понятию.
А давайте лучше займёмся обсуждением личности Ферма! Будет интереснее, чем играть в кубики (не имею в виду соответствующие кривульки).
:D :D :D :D :D

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 09:57 
Аватара пользователя
ivanovbp в сообщении #1572489 писал(а):
Из какого числа, бОльшего чем ${n^3}$ , можно извлечь кубический корень?

Нацело можно извлечь из любого куба,
Цитата:
бОльшего чем ${n^3}$
- сами же сказали, к примеру, из $(n+1)^3.$
На случай если Вы добавите делимость большего куба на $n$.
Это тоже не пройдёт:
$$a=6, n=4\Rightarrow a^3>n^3, \quad \text{но } \quad a^3\ne k^3n^3 \,\, \text{при целых \,} k$$

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 13:30 
При n, равном 4, a не может быть равно 6. "а" вообще не известно. Известно лишь, что
что а = ${3b^2n + 3bn^2 + n^3}$

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 14:27 
Аватара пользователя
Минуточку, Вы утверждали
ivanovbp в сообщении #1572489 писал(а):
Из какого числа, бОльшего чем ${n^3}$ , можно извлечь кубический корень? ...
Корень третьей степени можно извлечь только из чисел, которые равны ${8n^3}$ ,
${27n^3}$ , затем ${64n^3}$ .и вообще $k^3n^3$ , где k - любое целое число

Вы имеете в виду $a^3  = 3b^2n + 3bn^2 + n^3$. Но в утверждении нет этой специфики большего куба и без неё оно ложно. Следовательно при доказательстве представимости большего куба в виде $k^3n^3$ указанная специфика должна быть где-то использована.
Покажите, где Вы это используете?

(Оффтоп)

Интересно, кто Вы по профессии, уж не юрист ли?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 15:21 
bot
bot в сообщении #1572519 писал(а):
при доказательстве представимости большего куба в виде $k^3n^3$ указанная специфика должна быть где-то использована.

Уважаемый, снизойдите к тому, что "мы гимназиев не кончали" и потому воляпюк я не понимаю. Нельзя зи попроще?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 15:42 
Аватара пользователя
ivanovbp, не надо каждый раз с начала. Вы всё еще считаете, что
mihaild в сообщении #1572270 писал(а):
число $x + n^3$ для целого $x$ является точным кубом только тогда, когда оно равно $k^3 n^3$ для некоторого целого $k$

Или уже нет?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 15:50 
Аватара пользователя
ivanovbp в сообщении #1572523 писал(а):
воляпюк я не понимаю

Язык математики для Вас действительно волапюк, то есть тарабарщина.

(Оффтоп)

Поэтому я и заинтересовался Вашей профессией.
ivanovbp в сообщении #1572523 писал(а):
снизойдите к тому, что "мы гимназиев не кончали"
. Должен же я знать до какого уровня мне надо снизойти.

ivanovbp в сообщении #1572523 писал(а):
Нельзя зи попроще?

Да куда уж проще? Если вспомогательное утверждение ложно, то его нельзя использовать при доказательстве.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 19:17 
mihaild в сообщении #1572526 писал(а):
Вы всё еще считаете, что

mihaild в сообщении #1572526 писал(а):
число $x + n^3$ для целого $x$ является точным кубом только тогда, когда оно равно $k^3 n^3$ для некоторого целого $k$

Да, я так считаю

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение04.12.2022, 19:58 
Аватара пользователя
ivanovbp в сообщении #1572545 писал(а):
Да, я так считаю
Давайте тогда разберемся с этим, это просто отдельное утверждение, с ним можно разбираться, вообще не думая о теореме Ферма, согласны?
Давайте возьмем $x = 19$, $n = 2$.
1. Является ли $x$ (т.е. $19$) целым числом?
2. Является ли $x + n^3$ (т.е. $27$) точным кубом?
3. Равно ли число $x + n^3$ (т.е. $27$) числу $k^3 n^3$ (т.е. $8 \cdot k^3$) для какого-то целого $k$? Если да, то для какого?
Пожалуйста, ответьте на эти вопросы максимально кратко. Заметьте, что вопросы не упоминают никакого $b$, поэтому ответы на них его тоже упоминать не должны.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение05.12.2022, 08:19 
mihaild в сообщении #1572550 писал(а):
Давайте тогда разберемся с этим, это просто отдельное утверждение, с ним можно разбираться, вообще не думая о теореме Ферма, согласны?
Давайте возьмем $x = 19$, $n = 2$.
1. Является ли $x$ (т.е. $19$) целым числом?
2. Является ли $x + n^3$ (т.е. $27$) точным кубом?
3. Равно ли число $x + n^3$ (т.е. $27$) числу $k^3 n^3$ (т.е. $8 \cdot k^3$) для какого-то целого $k$? Если да, то для какого

Отвечаю:
На 1: Да, х, равный 19-ти, является целым числом
На 2 и 3 : Да, число 27 является точным кубом 3-ки, но его никак нельзя представить как
${k^3 \cdot{2^3} }$ Вернее, представить -то можно, но к не будет целым числом. Хотите пример? Пожалуйста:
при n = 2 и k = 1 ${k^3 n^3 = 8}$
при n = 2 k = 2 ${k^3 n^3 = 64}$ Где тут место для 27? Т.е. для n = 2 числа
${k^3 n^3}$, равного 27, не существует.
И общее замечание: В выражении x + ${n^3}$ нельзя произвольно выбрать оба слагаемых (если, конечно, придерживаться требования получить в итоге куб некоего числа
P.S. Вообще-то меня удивляет, что таким математическим людям приходится доказывать, что целый кубический корень из ${n^3}$ возможен только из ${8n^3}$ ${27n^3}$
${64n^3}$ и т. д.

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение05.12.2022, 09:20 
Аватара пользователя
ivanovbp в сообщении #1572599 писал(а):
Вообще-то меня удивляет, что таким математическим людям приходится доказывать, что целый кубический корень из ${n^3}$ возможен только из ${8n^3}$ ${27n^3}$
${64n^3}$ и т. д.

И этим "математическим людям" пора оставить надежду, что всякому прохожему можно втолковать, что кроме кубов $8n^3, 27n^3, 64n^3, \ldots$ (бОльших чем $n^3$) есть и другие

$$(n+1)^3, (n+2)^3, (n+3)^3, \ldots, (2n-1)^3, $$
$$(2n+1)^3, (2n+2)^3, (2n+3)^3, \ldots, (3n-1)^3, $$
$$(3n+1)^3, (3n+2)^3, (3n+3)^3, \ldots, (4n-1)^3, $$
$$\ldots$$

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение05.12.2022, 12:34 
Аватара пользователя
ivanovbp в сообщении #1572599 писал(а):
Да, число 27 является точным кубом 3-ки, но его никак нельзя представить как ${k^3 \cdot{2^3} }$
Т.е. ответы такие:
1. Да. 2. Да. 3. Нет.
Так?
Тогда еще несколько вопросов:
4. Согласны ли вы с утверждением "для любых целых чисел $x$ и $n$, если число $x + n^3$ является точным кубо, то существует целое $k$, такое что $k^3 n^3 = x + n^3$" (я немного переформулировал, чтобы ниже получить лучшие формулировки, но это эквивалентно предыдущему)?
5. Согласны ли вы, что подстановкой $x = 19$, $n = 2$ в утверждение в п. 4, получается утверждение "если число $27$ является точным кубом, то существует целое $k$, такое что $8 \cdot k^3 = 27$"?
5.1. Согласны ли вы, что если некоторое утверждение верно для любых целых $x$ и $n$, то оно верно и для $x = 19$, $n = 2$?
6. Согласны ли вы, что из утверждений в п. 5 и п. 2, следует утверждение "существует целое $k$, такое что $8 \cdot k^3 = 27$"?
6.1. Согласны ли вы, что утверждение, следующего из двух верных утверждений, верно?
7. Противоречат ли утверждения из п. 3 и п. 6 друг другу?
7.1. Могут ли противоречить друг другу два верных утверждения?

 
 
 
 Re: И вновь о "Вильяме нашем Шекспире" - о теореме Ферма
Сообщение05.12.2022, 13:31 
Аватара пользователя
ivanovbp
Ваше доказательство субъективно примерно выглядит так:
Доказывается утверждение:
Если $a^3+b^3=c^3$ - верное равенство, то $a,b,c$ имеют нецелочисленные значения, удовлетворяющие этому верному равенству.
Доказательство ведем (-те) способом от противного:
Предположим (-ли) (способом от противного), что $a,b,c$ только целые числа (кроме целого числа $0$)…
Далее следует текст рассуждений, приводящих к противоречию, опровергающему принятое предположение ($a,b,c$ - только целые числа), поскольку явно обозначилось наличие нецелочисленных решений.
Что, собственно, и требовалось доказать.

Но из такого доказательства не следует доказательство теоремы Ферма.

 
 
 [ Сообщений: 100 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group