2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 13:06 
binki в сообщении #1453059 писал(а):
невозможно осуществить разложения разностей и суммы кубов с образованием кубов $(c_1-a_1), (c_1-b_1)$ и $3(a_1+b_1)$. Здесь $(a_1,b_1,c_1)$ новая тройка решения УФ.

Напишите, какое конкретно равенство не выполняется в случае 2 и 3

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 18:04 
binki в сообщении #1453004 писал(а):
Числа $(a,b,c)$ взаимно простые и пусть $(c-a) $ делится на три, тогда выражения $3(c-a), (c-b), (a+b)$ также взаимно простые
Мне вот этот переход неясен.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 18:43 
Antoshka в сообщении #1453064 писал(а):
Напишите, какое конкретно равенство не выполняется в случае 2 и 3

Ещё раз. Случаи 2 и 3 не существуют для предположения, что ВТФ не верна. Для этих случаев ВТФ изначально верна. Действительно, при возведении в куб $(a+b-c)^3$ среди слагаемых есть выражение $a^3+b^3-c^3$. Если ВТФ верна, то есть куб не разлагается в сумму двух кубов, а именно $a^3+B=c^3$, то не может быть сформировано рассматриваемое произведение трех кубов $(x+y-z)^3=3(x+y)(z-x)(z-y)$. В этом случае $b= \sqrt [3]{B},  c-b=c-\sqrt [3]{B}, a+b=a+\sqrt [3]{B}$. Да и сама функция примет вид $f^3=(a+\sqrt [3]{B}-c)^3$. Поэтому для случаев 2 и 3 ничего доказывать не требуется.

-- 09.04.2020, 20:12 --

venco в сообщении #1453140 писал(а):
Мне вот этот переход неясен.

Уважаемый venco
Кубы $a^3,b^3,c^3$ из равенства Ферма являются составными числами $$a^3=(c-b)(c^2+cb+b^2),\quad b^3=3(c-a)(c^2+ca+a^2)/3, \quad c^3=(a+b)(a^2-ab+b^2)$$.
Поэтому если $(a,b,c)$ взаимно простые, то взаимно простые и $3(c-a),\quad (c-b),\quad (a+b)$.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 20:06 
binki в сообщении #1453155 писал(а):
Ещё раз. Случаи 2 и 3 не существуют для предположения, что ВТФ не верна. Для этих случаев ВТФ изначально верна. Действительно, при возведении в куб $(a+b-c)^3$ среди слагаемых есть выражение $a^3+b^3-c^3$. Если ВТФ верна, то есть куб не разлагается в сумму двух кубов, а именно $a^3+B=c^3$, то не может быть сформировано рассматриваемое произведение трех кубов $(x+y-z)^3=3(x+y)(z-x)(z-y)$. В этом случае $b= \sqrt [3]{B},  c-b=c-\sqrt [3]{B}, a+b=a+\sqrt [3]{B}$. Да и сама функция примет вид $f^3=(a+\sqrt [3]{B}-c)^3$. Поэтому для случаев 2 и 3 ничего доказывать не требуется.

Смотрите, вы делаете постановку
Antoshka в сообщении #1453037 писал(а):
подстановку $x=a-d,y=b-d,z=c-d$, причём $x+y=a+b-2d=9h^3,h\in\mathbb{N}$, то есть $d=(a+b-9h^3)/2 $.

У вас не доказано, что такая постановка обращает уравнение $x^3+y^3-z^3=0$ именно в нуль, а ведь именно это утверждение вам нужно для применения бесконечного спуска

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 20:50 
Antoshka в сообщении #1453177 писал(а):
Смотрите, вы делаете постановку
Antoshka в сообщении #1453037 писал(а):
подстановку $x=a-d,y=b-d,z=c-d$, причём $x+y=a+b-2d=9h^3,h\in\mathbb{N}$, то есть $d=(a+b-9h^3)/2 $.

У вас не доказано, что такая постановка обращает уравнение $x^3+y^3-z^3=0$ именно в нуль, а ведь именно это утверждение вам нужно для применения бесконечного спуска
Точно, в этом и загвоздка.
$(a+b-c)^3=3(a+b)(c-a)(c-b)$ только при условии $a^3+b^3=c^3$, а для заменённых значений это не так.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 22:10 
Antoshka в сообщении #1453177 писал(а):
У вас не доказано, что такая постановка обращает уравнение $x^3+y^3-z^3=0$ именно в нуль, а ведь именно это утверждение вам нужно для применения бесконечного спуска

1. Показано существование $f_1^3<f^3$
2. Показано, что $f_1^3$ не может существовать без существования новой тройки решения УФ.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 22:20 
binki в сообщении #1453203 писал(а):
1. Показано существование $f_1^3<f^3$
Показано существования куба: $3(c_1-a_1)(c_1-b_1)(a_1+b_1)=g^3$.

binki в сообщении #1453203 писал(а):
2. Показано, что $f_1^3$ не может существовать без существования новой тройки решения УФ.
Не показано, что $3(c_1-a_1)(c_1-b_1)(a_1+b_1)=g^3=(a_1+b_1-c_1)^3$.
А именно это нужно, чтобы $a_1^3+b_1^3=c_1^3$.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение09.04.2020, 22:27 
Аватара пользователя
binki
Математическое рассуждение - это последовательность коротких чётко сформулированных утверждений. Попробуйте представить свои результаты в подобной форме и скорее всего сами увидите все дыры.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение10.04.2020, 09:42 
Утундрий в сообщении #1453210 писал(а):
Математическое рассуждение - это последовательность коротких чётко сформулированных утверждений. Попробуйте представить свои результаты в подобной форме и скорее всего сами увидите все дыры.

Уважаемый Утундрий
Полностью согласен с Вами. Но, показывая коротко суть возможного бесконечного спуска для кубов, я говорил, что существуют не разъясненные моменты, и возникнут вопросы, на которые надо будет отвечать.
Вопросы оказались загвоздистые, и куб $f_1^3$ может выйти не из той двери, на что указал Уважаемый venco. Поэтому здесь надо подумать.
Нет сомнения, что Ферма мог бы своими методами решить этот загвоздистый вопрос рассматриваемого бесконечного спуска.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение11.04.2020, 07:28 
Antoshka в сообщении #1453037 писал(а):
в правой части будет $(3h)^3w^3m^3$,а слева $(a+b-c-d)^3$. Далее возможны три ситуации.
1)$(a+b-c-d)^3=(3h)^3w^3m^3$, что вы и рассматриваете методом бесконечного спуска

Здесь Вами допущена ошибка. Равенство $(a+b-c-d)^3=[(a-d)+(b-d)-(c-d)]^3$ выполняется. Но $a^3+b^3-(c+d)^3\ne (a-d)^3+(b-d)^3-(c-d)^3$.
Трактовка $(a+b-c-d)^3$ jошибочная.

 
 
 
 Re: Почему Ферма не мог доказать ВТФ?
Сообщение11.04.2020, 10:54 
binki в сообщении #1453508 писал(а):
Здесь Вами допущена ошибка. Равенство $(a+b-c-d)^3=[(a-d)+(b-d)-(c-d)]^3$ выполняется. Но $a^3+b^3-(c+d)^3\ne (a-d)^3+(b-d)^3-(c-d)^3$.
Трактовка $(a+b-c-d)^3$ jошибочная.

Я потом сформулировал вам вашу ошибку по-другому, после чего venco со мной согласился, а вы согласились с ним, что допустили ошибку

 
 
 [ Сообщений: 26 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group