2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 11  След.
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 11:13 


21/11/10
546
Vadim44 в сообщении #1262720 писал(а):
$ F(x,y)=\sin^2(\pi\sqrt[n]{x^n+y^n})\ +\ \sin^2(\pi a x)+\sin^2(\pi a y). \ (2)$

Vadim44
Если речь идёт о ВТФ, то переобозначим $ z =\sqrt[n]{x^n+y^n}$ и уберём квадраты у синусов тогда получим
$2 F(x,y)=3-\cos(2\pi z)-\cos(2\pi a x)-\cos(2\pi a y)$ и если $x,y,z,a$- натуральные числа, то выражение: $3-\cos(2\pi z)-\cos(2\pi a x)-\cos(2\pi a y) $ всегда ноль и нет там никаких экстремумов.
Это наверное был Ваш осенний "первоапрельский" розыгрыш :-)

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 11:35 


05/11/17

53
Сообщение 1
Дорогой mihaild, Вы пишете, что
mihaild в сообщении #1266059 писал(а):
Давайте все ваши рассуждения проводить для уравнения $x^n + y^n + z^n = v^n$. Условия на производные по $x$ и $y$ останутся почти теми же (под корнем добавится $z^n$, но корни всё равно сократятся). Тем самым вы доказали еще и гипотезу Эйлера для $n=4$.

Давайте посмотрим решение этой задачи у grizzly при $ x , y , z $ независящими от $ a $

grizzly в сообщении #1266093 писал(а):
$\ x^n+y^n+t^n=z^n. \ (1)$
$ F(x,y)=\sin^2(\pi\sqrt[n]{x^n+y^n+t^n})\ +\ \sin^2(\pi a x)+\sin^2(\pi a y)+\sin^2(\pi a t). \ (2)$
Очевидно, что при $ a=1 $ корни уравнения (1) обращают
функцию (2) в ноль, то есть в этих точках функция (2) имеет минимум.
Запишем [некоторые] необходимые условия существования экстремума:
$\frac{\partial F}{\partial x}=\pi x^{n-1}\sqrt[n]{{(x^n+y^n+t^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x^n+y^n+t^n})+\pi a\sin(2\pi a x),\ (3)$
$\frac{\partial F}{\partial y}=\pi y^{n-1}\sqrt[n]{{(x^n+y^n+t^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x^n+y^n+t^n})+\pi a\sin(2\pi a y) .\ (4)$
Преобразуем уравнения (3) и (4) к виду:
$\frac{x^{n-1}}{y^{n-1}} =\frac{\sin(2\pi a x)}{\sin(2\pi a y)} .\ (5)$
Уравнения (3), (4) и (5) в точках минимума функции (2)
должны удовлетворяться при любых значениях $ a. $
Будем искать координаты минимума функции (2) во множестве
натуральных чисел. В этом случае отношение $ \sin(2\pi a x) \ / \sin(2\pi a y) $
при $ a=1 $ не определено, но имеет вполне определенный смысл при
значениях $ a \neq 1 $ . Следовательно может быть поставлен вопрос
о разыскании предела этого отношения при $ a \to 1 $ . Если
раскроем неопределенность по правилу Лопиталя, придем к уравнению
$\frac{x^{n-1}}{y^{n-1}} =\frac{x}{y} .\ (6)$
При $ x $ и $ y $, равными различным натуральным числам, и
$ n \neq 2 $ ,в том числе и при $ \ n=3 $, уравнение (6) противоречиво
и поэтому функция (2) в этих точках не может иметь минимума,
а, следовательно, и нет таких натуральных чисел, которые бы
удовлетворяли уравнению (1).


Вот мой ответ на это.
Vadim44 в сообщении #1266110 писал(а):
grizzly
А почему Вы рассмотрели только два условия существования экстремумов функции (2)
и не рассмотрели третье -производную по $ t $ .
В этом случае у Вас будет не одно уравнение (5), а система уравнений (5) и (5').
А Вы рассматриваете только одно уравнение, когда надо решать систему.
Пока довольно, что Вы на это скажите?


Вот ответ grizzly
grizzly в сообщении #1266132 писал(а):
Vadim44
Вы верно нашли ошибочное место. В Вашем случае -- та же проблема.


Теперь давайте рассмотрим решение этой задачи у wrest при $ x , y , z $ независящими от $ a $
wrest в сообщении #1266137 писал(а):
При рассмотрении третьего условия вы получите три уравнения (5):
$\frac{x^{n-1}}{y^{n-1}} =\frac{\sin(2\pi a x)}{\sin(2\pi a y)} .\ (5)$
$\frac{x^{n-1}}{t^{n-1}} =\frac{\sin(2\pi a x)}{\sin(2\pi a t)} .\ (5')$
$\frac{t^{n-1}}{y^{n-1}} =\frac{\sin(2\pi a t)}{\sin(2\pi a y)} .\ (5'')$
Применяя правило Лопиталя вы соответственно получите три уравнения (6):
$\frac{x^{n-1}}{y^{n-1}} =\frac{x}{y} .\ (6)$
$\frac{x^{n-1}}{t^{n-1}} =\frac{x}{t} .\ (6')$
$\frac{t^{n-1}}{y^{n-1}} =\frac{t}{y} .\ (6'')$
Решив каждое из которых и подставив одно решение в другое по кругу, в итоге вы получите $x=y=t$

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 12:13 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Vadim44
Простите, Вы слишком вольно вырвали мою цитату из контекста. Я ни разу не утверждал, что Вы всегда правы -- Вы были правы совершенно в другом месте.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 12:42 


05/11/17

53
Сообщение 2
Дорогие mihaild, grizzly и wrest!
Когда Вы рассматривали функции (5), (5'), (5"), Вы должны были обратить внимание на то, что Вами
в предположении, что $ x $ и $ y $ не зависят от параметра $ a $ , были получены
три различных функции $ n_1 ( a ) $ , $ n_2 ( a ) $ и $ n_3 ( a ) $
вместо одной $ n ( a ) $, а это говорит о том, что $ x $ и $ y $ зависят от параметра $ a $ .
Поэтому Вы получили неправильное решение, что $ x = y = z $ которое даже не проверили.
Подстановка решения в диофантово уравнение дает $ \sqrt3 \cdot x = u $ , откуда следует,
что диофантово уравнение не имеет целочисленных решений.
Далее, Вы неверному решению противопоставляете контрпример, который в данном случае не является контрпримером.

Теперь, что касается того, что в моем решении те же проблемы.
В моем решении нет ни каких проблем, потому что я имею одну функцию $ n ( a ) $ в предположении, что
$ x $ и $ y $ не зависят от параметра $ a $ и что не возникает ни каких противоречий.
То, что это так, я докажу в следующем сообщении.

Теперь сделаем выводы. Увеличение числа переменных в диофантовом уравнении свыше трех, исключает
независимость $ x $ и $ y $ от параметра $ a $ , что надо учитывать при нахождении пределов.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 12:59 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Vadim44
В связи с происшедшими изменениями и толкованиями, поместите теперь новейшую версию Вашего 'доказательства'.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 14:10 
Заслуженный участник


09/05/12
25179
 !  По итогам рассмотрения жалоб Vadim44 на "засоряющие тему" сообщения:
1) жалобы закрыты без удовлетворения;
2) авторам "засоряющих тему" сообщений в дальнейшем рекомендуется задавать Vadim44 явно сформулированные вопросы (на которые ТС в соответствии с правилами обязан отвечать); деликатные намеки, по-видимому, тут не годятся.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 14:42 


05/11/17

53
Уважаемая Shwedka!
Вы пишете
shwedka в сообщении #1266740 писал(а):
Vadim44
В связи с происшедшими изменениями и толкованиями, поместите теперь новейшую версию Вашего 'доказательства'.

С удовольствием это сделаю. Давайте начнем с чистого листа.
Неприятие моего доказательства теоремы Ферма связано с путаницей и разночтением
трактования переменных $ x $ и $ y $ и толкованием функции (5) $ n ( a ) $ .
В уравнениях (3,4,5) путают все множество координат точек экстремумов и
координаты экстремума в произвольной точке.
В уравнениях (3,4,5) путают координаты экстремума в произвольной точке и
координаты экстремума в произвольной точке с целыми координатами $ x_0 $ и $ y_0 $.
В функции (5) путают зависимость $ x $ и $ y $ от параметра $ a $
с независимостью $ x $ и $ y $ от параметра $ a $ .
А путают потому, что различные переменные обозначены одинаковыми буквами,
в одних случаях переменные $ x $ и $ y $ рассматриваются как независимые,
а в других как зависимые.

И так начнем!

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ФЕРМА
Будем натуральные числа, которые удовлетворяют уравнению (1),
называть корнями уравнения Ферма
$\ x^n+y^n=z^n. \ (1)$
Рассмотрим функцию двух переменных $ x $ и $ y $ и двух параметров $ n $ и $ a $ .
$ F(x,y)=\sin^2(\pi\sqrt[n]{x^n+y^n})\ +\ \sin^2(\pi a x)+\sin^2(\pi a y). \ (2)$
Очевидно, что при $ a=1 $ корни уравнения Ферма обращают
функцию (2) в ноль, то есть в этих точках функция (2)
имеет локальные минимумы.
Запишем необходимые условия существования экстремума функции (2):
$\frac{\partial F}{\partial x}=\pi x^{n-1}\sqrt[n]{{(x^n+y^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x^n+y^n})+\pi a\sin(2\pi a x) ,\ (3)$
$\frac{\partial F}{\partial y}=\pi y^{n-1}\sqrt[n]{{(x^n+y^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x^n+y^n})+\pi a\sin(2\pi a y) .\ (4)$
Будем искать координаты минимума функции (2) во множестве
натуральных координат.
Теперь запишем необходимые условия существования экстремума
функции (2) в точках с целыми координатами $ x_0$ и $ y_0$
для чего координаты $ x_0$ и $ y_0$ подставим в уравнения (3) и (4).
Тогда получим
$\pi x_0^{n-1}\sqrt[n]{{(x_0^n+y_0^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x_0^n+y_0^n})+\pi a\sin(2\pi a x_0) ,\ (5)$
$\pi y_0^{n-1}\sqrt[n]{{(x_0^n+y_0^n)}^{1-n}}\ \sin(2 \pi\sqrt[n]{x_0^n+y_0^n})+\pi a\sin(2\pi a y_0) .\ (6)$
Таким образом, получили два уравнения с переменными $ n $ и $ a $ и
постоянными коэффициентами $ x_0$ и $ y_0$.
В эти уравнения входит неопределенный корень $\sqrt[n]{(x_0^n+y_0^n)}$
в смысле неопределенности того, какое значение он принимает
целое или иррациональное. Чтобы исключить этот корень
преобразуем уравнения (5) и (6) к виду:
$\frac{x_0^{n-1}}{y_0^{n-1}} =\frac{\sin(2\pi a x_0)}{\sin(2\pi a y_0)} .\ (7)$
Уравнение (7) можно рассматривать как неявную функцию переменных $ n $ и $ a $,
то есть это уравнение позволяет найти нам функцию $ n ( a ) $, в которой $ x_0$ и $ y_0$
постоянны и не зависят от переменно $ a $.
В этом случае отношение $ \sin(2\pi a x_0) \ / \sin(2\pi a y_0) $
при $ a=1 $ не определено, но имеет вполне определенный смысл при
значениях $ a \neq 1 $ . Следовательно может быть поставлен вопрос
о разыскании предела этого отношения при $ a \to 1 $ . Если
раскроем неопределенность по правилу Лопиталя, придем к уравнению
$\frac{x_0^{n-1}}{y_0^{n-1}} =\frac{x_0}{y_0} .\ (8)$
При $ x_0 $ и $ y_0 $, равными различным натуральным числам, и
$ n \neq 2 $ ,в том числе и при $ \ n=3 $, уравнение (8) противоречиво
и поэтому функция (2) в этих точках не может иметь минимума,
а, следовательно, и нет таких натуральных чисел, которые бы
удовлетворяли уравнению (1).
Таким образом, теорема Ферма доказана.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 15:23 
Заслуженный участник
Аватара пользователя


09/09/14
6328
Vadim44 в сообщении #1266792 писал(а):
Уравнение (7) можно рассматривать как неявную функцию переменных $ n $ и $ a $, то есть это уравнение позволяет найти нам функцию $ n ( a ) $
Вот в этом месте функция $n(a)$ действует из [подмножества] $\mathbb R$ в $\mathbb R$ (не обязательно целочисленная), верно?

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 15:26 
Заслуженный участник
Аватара пользователя


11/12/05
3542
Швеция
Vadim44 в сообщении #1266792 писал(а):
преобразуем уравнения (5) и (6) к виду:
$\frac{x_0^{n-1}}{y_0^{n-1}} =\frac{\sin(2\pi a x_0)}{\sin(2\pi a y_0)} .\ (7)$
Уравнение (7) можно рассматривать как неявную функцию переменных $ n $ и $ a $,
то есть это уравнение позволяет найти нам функцию $ n ( a ) $, в которой $ x_0$ и $ y_0$
постоянны и не зависят от переменно $ a $.

Для того, чтобы делать выводы из уравнения 7, нужно знать, что оно выполняется. Откуда 7 взялось?
из условий '
экстремума функции 2 при данном а. То есть, если при этом а у функции 2 есть экстремум в точке $ x_0$,$ y_0$,
то 7 должно выть выполнено. Если же такого экстремума нет, то ничего о справедливости 7 сказать нельзя.
Еще раз, по-другому. 7 - это необходимое услвие экстремума. Если экстремум есть, то, да, 7 выполнено. Если экстремума нет, то выполнение 7 ни из чего пока не следует.

То есть, сначала докажите, что у функцции 2 есть при $a\ne1$ экстремум в точке $ x_0$,$ y_0$,
а только потом обращайтесь с 7 как с верным равенством.

Еще раз, медленно. Делать какие-то выводы из уравнения 7 можно ТОЛЬКО после того, как Вы установите, что это уравнение выполняется (естественно, в основном предположении, что УФ имеет целочисленные решения.)

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 16:01 


21/11/10
546
Vadim44 в сообщении #1266792 писал(а):
Таким образом, теорема Ферма доказана.


На такое отваживались не многие 8-)
Vadim44
Великодушно прошу простить за резкие шутки и не обижаться на иронию.
Вы обратились по адресу изложив на этом форуме доказательство ВТФ в общем случае.
Интересно!
Откуда взялся этот нетривиальный подход?
Может быть скажете пару слов по этому поводу, пожалуйста.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 16:47 
Заслуженный участник
Аватара пользователя


23/07/05
17985
Москва
Vadim44 в сообщении #1266792 писал(а):
С удовольствием это сделаю. Давайте начнем с чистого листа.
И напишем очередной безграмотный текст. Несмотря на то, что замечания уже делались.

Vadim44 в сообщении #1266792 писал(а):
Запишем необходимые условия существования экстремума функции
То, что далее обозначено номерами (3) и (4) — это вовсе никакие не условия. Это определения крякозябр $\frac{\partial F}{\partial x}$ и $\frac{\partial F}{\partial y}$. Может быть, Вы посмотрите в учебнике, как записываются необходимые условия существования экстремума?

Vadim44 в сообщении #1266792 писал(а):
для чего координаты $ x_0$ и $ y_0$ подставим в уравнения (3) и (4)
(3) и (4) — никакие не уравнения. Как уже сказано, это определения неких значков.

Vadim44 в сообщении #1266792 писал(а):
Таким образом, получили два уравнения с переменными $ n $ и $ a $ и
постоянными коэффициентами $ x_0$ и $ y_0$.
(5) и (6) — не уравнения. Школьников ругают, если они называют это уравнениями.

Vadim44 в сообщении #1266792 писал(а):
к виду:
$\frac{x_0^{n-1}}{y_0^{n-1}} =\frac{\sin(2\pi a x_0)}{\sin(2\pi a y_0)} .\ (7)$
Я, конечно, догадываюсь, что Вы имели в виду выше, но безграмотности это не оправдывает.

Vadim44 в сообщении #1266792 писал(а):
то уравнение позволяет найти нам функцию $ n ( a ) $
Вот и найдите.

Vadim44 в сообщении #1266792 писал(а):
$\frac{x_0^{n-1}}{y_0^{n-1}} =\frac{x_0}{y_0} .\ (8)$
Если Вы переходили к пределу, то здесь должно стоять не первоначальное значение $n$, а предельное значение функции $n(a)$. Вот и найдите его. Только тогда получите право писать
Vadim44 в сообщении #1266792 писал(а):
теорема Ферма доказана.
Если у Вас такое желание ещё останется.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 17:24 


05/11/17

53
Уважаемая Shwedka!
Вы меня упредили, я только что собирался ответить на Вашу критику в более ранних сообщениях,
но Вы прислали последнее послание, на которое я счел нужным ответить в первую очередь.
А я только собирался ответить на те вопросы, которые Вы задали в последнем сообщении.
Вот Вы пишете.

shwedka в сообщении #1266205 писал(а):
Вот когда докажете, что для каждого a вблизи 1 эти все три графика перескаются -- то есть, они совпадают, тогда можно говорить о Лопитале и тп. A до тех пор Вы изучаете поведение какой-то функции $n(a)$, не имеющей отношение к экстремумам функции (2),
поскольку,

повторяю,

Вы не можете доказать, что при значении параметра $a$, близком к единице, но не равном 1,
ваша функция (2), хоть при каком-то $n=n(a)$, имеет локальный минимум в той же самой точке $x,y$, которая предположительно дает целочисленное решение уравнения Ферма.
Ну, нет экстремума в этой точке!


Вот Вы говорите, что я не смогу доказать, что функция (2) в точке близкой к точке $ a =1 $ может иметь экстремума.
Я могу доказать более общее утверждение: "что функция (2)" может иметь экстремумы в любой точке с координатам $ x $ и $ y $
и при любом значении параметра $ a =1 $.
Давайте рассмотрим функцию (2)
$ F(x,y)=\sin^2(\pi\sqrt[n]{x^n+y^n})\ +\ \sin^2(\pi a x)+\sin^2(\pi a y). \ (2)$.
При любых заданных значениях $ x $ и $ y $ и при любом значении $ a $ два последних слагаемых не завися от $ n $ и являются константами.
Первое слагаемое в функции (2) представляет собой синусоиду с аргументом $ n $, которая имеет множество минимумов,
поэтому и функция (2) будет иметь множественные минимумы. Соответствующим подборов значения $ n $ можно совместить минимум
функции (2) с координатами $ x $ и $ y $. Поэтому функция (2) может иметь минимумы в любой точке с координатами $ x $ и $ y $ и при любом $ a $.
Здесь остается открытым вопрос, и будет ли при этом $ n $ значение функции (2) в этой точке равно 0.
Отсюда следует, что если имеется в точке экстремум функции (2), то и все три графика пересекаются в этой точке.

-- 19.11.2017, 17:31 --

Уважаемый Someone!
Давайте дождемся отзыва Shwedka,
она более квалифицированный специалист в области математики, чем Вы.

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 17:57 


21/11/10
546
Vadim44 в сообщении #1266872 писал(а):
Давайте дождемся отзыва Shwedka,

(Оффтоп)

Предположительно, отзыв будет стандартным: НЕ ДОКАЗАНО

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 18:00 


26/08/11
2108
Vadim44, а $n$ у вас должно быть целое, или не обязательно?

 Профиль  
                  
 
 Re: Одностраничное доказательство теоремы Ферма получено в 1994
Сообщение19.11.2017, 18:00 
Заслуженный участник


09/05/12
25179
 ! 
Vadim44 в сообщении #1266872 писал(а):
Уважаемый Someone!
Давайте дождемся отзыва Shwedka,
она более квалифицированный специалист в области математики, чем Вы.
Vadim44, предупреждение за отказ от ответа на заданный в дискуссионной теме вопрос. Отвечайте.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 156 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 11  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: ydgin


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group