Пишут, что впервые отклонение луча света как потока частиц в гравитационном поле рассмотрел Зольднер.
Новое — это хорошо забытое старое. Но расчёт был сделан на основе теории света, которая была отвергнута как ошибочная. А современная теория появилась много позже, и о способе учёта гравитации в ней никто до Эйнштейна не догадывался. И необходимость такого учёта была, мягко выражаясь, не очевидной, ввиду полного отсутствия каких-либо экспериментальных данных.
Этот Лагранжиан очевидно соответствует нерелятивистскому движению в следующей метрике:
которая, при
является метрикой Пэнлеве, эквивалентной метрике Шварцшильда.
Ну да. Вы взяли решение, полученное в ОТО, изменили уравнения классической механики и заявили, что классическая механика даёт тот же результат. Фактически вместо плоского пространства-времени Вы взяли геометрию Шварцшильда. Вопрос: откуда должны были взять эти уравнения в 1900 году?
На самом деле есть ещё одна существенная претензия. То, что Вы делаете, можно было бы назвать в лучшем случае постньютоновским приближением ОТО. И даже не ньютоновским, потому что на уровне ньютоновского приближения от всех компонент метрики остаётся только
. И не классической механикой, потому что классической механике соответствует своя собственная геометрия пространства-времени, и в ней ввести риманову метрику нельзя. В плоском случае вместо геометрии Минковского (в СТО) классическая механика требует геометрии Галилея (И. М. Яглом. Принцип относительности Галилея и неевклидова геометрия. "Наука", Москва, 1969). Изложение теории Ньютона на языке искривлённого пространства-времени можно найти в МТУ, том 1, глава 12. Там также подчёркивается, что пространственно-временную метрику ввести невозможно.
Видимо, впервые всерьёз о влиянии гравитации на распространение света писал А. Эйнштейн в 1907 году в работе "О принципе относительности и его следствиях" (Альберт Эйнштейн. Собрание научных трудов в четырёх томах. 1. Работы по теории относительности. 1905—1920. "Наука", Москва, 1965. Статья № 8). Там он явным образом пользуется сильным принципом эквивалентности. Я не вникал в вычисления и не знаю, правильные ли у него получились результаты. К этому вопросу он возвращается в 1911 году в статье "О влиянии силы тяжести на распространение света" (там же, статья № 14). В начале статьи он явно формулирует (сильный) принцип эквивалентности, подчёркивая, что он будет достаточно глубоким только в случае, если его распространить на все физические явления. В § 4 он вычисляет отклонение луча света, проходящего мимо края Солнца, и получает половинный результат
. В последующих работах Эйнштейн продолжает развитие своих идей по включению гравитации в СТО и обнаруживает, что они приводят к противоречиям. В МТУ глава 7 посвящена несовместимости гравитации и СТО.
Далее Эйнштейн в ряде статей (иногда вместе с М. Гроссманом) занимается разработкой теории гравитации на основе обобщения СТО. В статье 1915 года "Объяснение движения перигелия Меркурия в общей теории относительности" (тот же сборник, статья № 36) Эйнштейн вычисляет аномальное смещение перигелия Меркурия и получает правильные
, хотя уравнения теории ещё "не доведены до ума" и справедливы только с некоторым ограничением на тензор энергии-импульса материи. На движение Меркурия это ограничение не влияет, поскольку в вакууме упомянутый тензор нулевой. Здесь же он указывает, что правильная величина угла отклонения светового луча в гравитационном поле Солнца равна
. Правильные уравнения появляются в статье № 37 (изменения сводятся к тому, что вместо тензора энергии-импульса
появляется
).