А прямая сумма

-частичных пространств плюс вакуум --- это уже пространство Фока.
Вот чисто про Фока я и хочу разобраться. Попытаюсь еще раз описать, что я въехал из ваших разъяснений. Про осцилляторы для полевых трактовок пока забудем. Занимаемся чисто "Фоком". Берем 1-частичные состояния

для осциллятора

. Т.е. здесь

- это нормальная физическая координата нормальной квантовой частицы. В частности здесь сидит и низшее ее состояние

. Это все лежит в "нашем (пока) маленьком"

. Добавляем теперь вторую частицу

и делаем тоже самое. Получаем еще одну копию

. Если начать строить бозонную КМ для этих "двух летающих в физическом

-пр-ве частиц", то мы сооружаем

. Также для 3-х частиц и т.д.
до бесконечности. Пока я еще не объединяю их, а
просто имею бесконечное семейство квантовых механик: 1-частичной, 2-х частичной и т.д. (так можно говорить?) Но каждая из них, для простоты, - это бозонная теория. Все пр-ва симметричны: символы

. Теперь, по вашему, я складываю их в прямую сумму
Вы утверждаете, что это новое пр-во еще не есть фоковское, потому что там нет вакуума. Так? Но там, в каждом из этих подпространств есть свои состояния с наименьшей энергией. Почему надо еще отдельную константу приписать? Почему нельзя считать вакуумом

Ведь формально здесь, в этой формуле уже сидят все наинизшей энергии квантовые механики, которые я собирал выше. По всем возможным кол-вам частиц я уже пробежался и построил бесконечное множество, которое в себя включает все конечные подслучаи. Может это связано с вырождением вакуумов для всех более чем 1-частичных квантовых механик?
И вновь, вопрос про вектор
Если смотреть той колокольни, что я описал выше, то что здесь делает 2-частичная функция, когда она уже есть в 4-частичной. То есть, если формально строить 4-частичную КМ, то не нужно отдельно строить 2-частичную. Она есть в предыдущей. Просто нужно свернуть все по 3-й и 4-й координате. Я строю догадку, что при построении башни Фока мы не просто строим пр-во для любого конечного кол-ва частиц, а что-то большее. Если бы нужно было иметь, скажем, КМ для 333 частиц, просто взяли бы 333 симметрическую степень 1-частичного

. Поэтому мне не понятно, как понимать вашу трактовку
Очень просто: как суперпозицию вакуума, двухчастичного состояния, и четырехчастичного.
Я хотел бы пока обратить внимание, что я специально писал здесь физические координаты

, поскольку они в точности (??) настоящие физические координаты частиц, участвующих в игре. Абстрактные осцилляторные

пока не употребляю
-- 04.06.2016, 12:52 --Этого я просто не понял, что Вы имеете в виду.
Ничего не понял. А потому ответить не могу.
Я здесь имел в виду следующее. Я читаю к книжке Новиков-Тайманов "Современные структуры и поля" на стр 251. "Согласно представлениям физики XX в, частицам сопоставляются операторы". Далее идут стандартные формулы про коммутаторы бозонов и антикоммутаторы фермионов. Мне было не понятно как понимать "частице сопоставляется оператор". Есть векторы состояния, есть операторы, частицы - это, грубо говоря, указатели/наборы коммутирующих величин в волновых функциях. Что здесь делают операторы? Вот ваша формула про линейную комбинацию операторов рождения и уничтожения


--- числовые ....
мне и показалась проясняющей многое (или я затупил окончательно?) Мне показалось, что тогда все становится на свои места. То есть в точности как в обычной КМ, только с бесконечным числом степеней свободы. Наблюдаемые - это операторы, сопоставляемые функциям на фазовом пр-ве. Просто их бесконечное кол-во (базовых функций

). Ну а наблюдаемые - это их спектры и средние. Это я и имел в виду в формуле
-- 04.06.2016, 12:59 --А вакуумное состояние (в картине частиц) не имеет никакого отношения к

.
Обдумываю тщательно эту мысль... Ни к тем 1-частичным

, ни к конечной сумме симметрических произведений (

-частичных квантовых механик)? Как бы здесь поподробнее...
-- 04.06.2016, 13:05 --А уж в конкретном состоянии это базисный вектор идет с некоторым множителем (разным для разных состояний)
Сам базисный вектор-вакуум - он один же? Если один, то понятно, что он входит в какое-то состояние с каким-то множителем. А что на счет вырождения вакуума. У нас же все-таки будет потом каждая частица 3-мерная. Или, если не один, то неединственность вакуума сидит уже в 1-мерном случае, который мы пока разбирали выше?