2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 15:53 
Для рациональных, да, средний школьник, может решить такую задачу, по крайней мере, двумя способами. Одним, уж, точно.( $(\alpha;\beta)$ действительные числа, нерациональные.)

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 16:19 

(Оффтоп)

TR63 в сообщении #1065769 писал(а):
Порой удаётся вычислить кубический корень из комплексного числа в форме $\alpha+i\beta$. Вопрос: есть ли критерий в виде $\alpha=f(\beta)$ (без мнимых единиц), чтобы различать эти случаи (когда можно, когда нет).
TR63 в сообщении #1065785 писал(а):
$(\alpha;\beta)$ действительные числа, нерациональные.)
В таком случае, вопрос бессмысленный.
Формальный ответ: для любых $\alpha,\beta$

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 16:56 

(Оффтоп)

Sonic86 в сообщении #1065791 писал(а):
Формальный ответ: для любых \alpha, \beta

Можно ссылку на источник. Если вопрос непонятно или бессмысленно сформулирован, тогда меня больше устроит ответ Куроша, что общего метода извлечения кубического корня из комплексного числа в форме $\alpha+i\beta$ не известно.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 16:58 
Аватара пользователя
TR63
Вопрос упирается в понимание фразы "извлечение кубического корня". То есть какие действия считаются "реализуемыми".

Вот например, вы умеете извлекать кубический корень из 2? Чему он равен?

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 17:32 
provincialka в сообщении #1065807 писал(а):
То есть какие действия считаются "реализуемыми".

Поскольку для решения задачи надо решать кубическое уравнение (тригонометрическая форма не интересует), то реализуемыми считаются действия, при которых действительная и мнимая части выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 17:55 
TR63 в сообщении #1065815 писал(а):
Поскольку для решения задачи надо решать кубическое уравнение (тригонометрическая форма не интересует), то реализуемыми считаются действия, при которых действительная и мнимая части выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями.
Тогда это может оказаться несложной, но громоздкой задачей.
Пусть $\sqrt[3]{\gamma+i\delta}=\alpha+i\beta$. Поскольку $\alpha,\beta$ выражаются через какие-то радикалы, то $\gamma,\delta$ тоже выражаются через эти же радикалы. Дальше действуем как в случае $\mathbb{Q}$: возводим все в кубик и если рассматриваемое поле $P$, содержащее $\alpha,\beta$ имеет конечный базис, то приравниваем коэффициенты и решаем систему. Мне мерещится, что задача разрешима и при некоторых типах бесконечных базисов.
Поскольку полей $P$ суть менее, чем дофига, потому искать это в литературе особого смысла нет.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 18:19 
Sonic86 в сообщении #1065823 писал(а):
Поскольку $\alpha,\beta$ выражаются через какие-то радикалы

Это надо доказать или опровергнуть. ($\gamma;\delta$) заданные действительные числа. У Вас может получится уравнение с тремя действительными корнями.... Или надо доказать, что такого не может случиться. Если Вы считаете, что в общем виде это доказано, то у меня нет вопросов.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 18:53 

(Оффтоп)

Sonic86 в сообщении #1065823 писал(а):
$\sqrt[3]{\gamma+i\delta}=\alpha+i\beta$.
TR63 в сообщении #1065832 писал(а):
Sonic86 в сообщении #1065823 писал(а):
Поскольку $\alpha,\beta$ выражаются через какие-то радикалы

Это надо доказать или опровергнуть. ($\gamma;\delta$) заданные действительные числа. У Вас может получится уравнение с тремя действительными корнями.... Или надо доказать, что такого не может случиться. Если Вы считаете, что в общем виде это доказано, то у меня нет вопросов.
Вы же сами пишете:
TR63 в сообщении #1065815 писал(а):
реализуемыми считаются действия, при которых действительная и мнимая части выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями.
Думаем, не торопимся...

А, нет, это я туплю:
TR63 в сообщении #1065815 писал(а):
действительная и мнимая части выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями.
В таком случае задача опять бессмысленна: ответ $(\forall\alpha,\beta)$.
Я писал про случай, когда подкоренные выражения рациональны, а точнее, когда они лежат в поле корней (т.е. во множестве, порождаемом операциями поля и извлечения радикала в $\mathbb{C}$)

TR63 в сообщении #1065832 писал(а):
У Вас может получится уравнение с тремя действительными корнями....
уравнение $z^3=\gamma+i\delta$ всегда имеет общеизвестное число корней.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 18:57 
Аватара пользователя
Sonic86 в сообщении #1065823 писал(а):
приравниваем коэффициенты и решаем систему
И опять придётся решать кубическое уравнение, корни которого выражаются через радикалы с комплексными подкоренными выражениями… Или я что-то не понял? У Вас ведь нет $\alpha$ и $\beta$. Откуда Вы знаете, через какие радикалы они выражаются и выражаются ли вообще? Прошу прощения, может, я глупость написал, но я этим никогда не занимался.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 19:18 
Sonic86 в сообщении #1065843 писал(а):
ответ $(\forall\alpha,\beta)$

Тогда получается, что, взяв произвольное кубическое уравнение с тремя действительными корнями, сможем корни выразить без мнимых единиц?
TR63 в сообщении #1065815 писал(а):
реализуемыми считаются действия, при которых действительная и мнимая части выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями

Это относится к $(\alpha;\beta)$.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 19:35 
Аватара пользователя
Да сколько ж можно мусолить этот вопрос. Определитесь, что означают слова "выразить корни в действительных числах". Если имеется в виду выразить в виде выражения с конечным числом арифметических операций, то в общем случае нельзя. Если же допустимо использование бесконечных рядов и прочих арксинусов, то естественно всегда можно. Ибо итерационных численных методов в наше время так же много, как у дурака махорки.

В частности, и кубические, и вообще полиномиальные уравнения лехко решаются дихотомией, Ньютоном или секущими, или еще другими методами, тысячи их. На полном серьезе не понимаю, об чем тут ведется такая оживленная дискуссия. В частности, удивляет количество страниц: оно больше $1$. Одна страница - это уже чудовищно много для такой темы.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 20:49 
Аватара пользователя
INGELRII в сообщении #1065859 писал(а):
Если же допустимо использование бесконечных рядов и прочих арксинусов, то естественно всегда можно.
Ну не считайте всех дураками. Речь идёт о чистой алгебре, а в алгебре нет пределов. Всякие нормы, метрики и топологии — это дополнительные структуры сверх алгебраической.

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 20:52 
INGELRII в сообщении #1065859 писал(а):
"выразить корни в действительных числах"

Такая задача здесь точно не решается.
INGELRII в сообщении #1065859 писал(а):
не понимаю, об чем тут ведется такая оживленная дискуссия.

Думаю, надо ещё раз сформулировать задачу, т.к. в процессе обсуждения произошла путаница с $(\alpha;\beta)$,$(\gamma;\delta)$
Sonic86 в сообщении #1065823 писал(а):
Пусть $\sqrt[3]{\gamma+i\delta}=\alpha+i\beta$

Даны$(\gamma;\delta)$ действительные числа.
TR63 в сообщении #1065815 писал(а):
реализуемыми считаются действия, при которых действительная и мнимая части т.е.$(\alpha;\beta)$ выражены через коэффициЭнты при помощи радикалов с действительными подкоренными выражениями.
.
Меня интересовал вопрос, при каких условиях на $(\gamma;\delta)$, возможно указанное представление. Очевидно, что такое возможно не всегда. Если соответствующее кубическое уравнение имеет один действительный корень, то всё понятно. А, если три действительных корня?

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 21:36 

(Оффтоп)

INGELRII в сообщении #1065859 писал(а):
На полном серьезе не понимаю, об чем тут ведется такая оживленная дискуссия.
Да, правильно. Воспользовался кнопкой "игнор".

Someone в сообщении #1065846 писал(а):
И опять придётся решать кубическое уравнение, корни которого выражаются через радикалы с комплексными подкоренными выражениями… Или я что-то не понял? У Вас ведь нет $\alpha$ и $\beta$. Откуда Вы знаете, через какие радикалы они выражаются и выражаются ли вообще?
А я, похоже, ошибаюсь. Смысл у меня было в том, что можно было бы все сводить к относительно легким диофантовым уравнениям, но это получается только для простых случаев.

Примеры:
1. $P=\mathbb{Q}(i)$. Пусть надо вычислить $\sqrt[3]{a+bi}$ для $a,b\in\mathbb{Q}$. Домножением на определенное число задача сводится к вычислению $\sqrt[3]{a+bi}$ для $a,b\in\mathbb{Z}$.
Так как корень извлекается, то $\sqrt[3]{a+bi}=c+di$ для некоторых $c,d\in\mathbb{Z}$. Возводим в куб, группируем действительные и мнимые части, получаем систему
$\left\{\begin{array}{ll}
a=c(c^2-3d^2) \\
b=d(3c^2-d^2)
\end$
Перебором всех делителей $a,b$ получим все возможные пары $c,d$, проверяем, если нашли, значит корень извлекается.
2. $P=\mathbb{Q}(\sqrt{d})$. Пусть надо вычислить $\sqrt[3]{a+b\sqrt{d}}$ для $a,b\in\mathbb{Q}$. Домножением на определенное число и вынесением квадратов за корень задача сводится к вычислению $\sqrt[3]{a+b\sqrt{d}}$ для $a,b,d\in\mathbb{Z}$, причем $d$ свободно от квадратов. Если $d=-1$, то задача сводится к пункту 1, иначе $\sqrt{d}$ иррационально.
Так как корень извлекается, то $\sqrt[3]{a+b\sqrt{d}}=c+e\sqrt{d}$ для некоторых $c,e\in\mathbb{Z}$. Возводим в куб, группируем рациональные и иррациональные части, получаем систему
$\left\{\begin{array}{ll}
a=c(c^2+3de^2) \\
b=e(3c^2+de^2)
\end$
Перебором всех делителей $a,b$ опять же получим все возможные пары $c,e$, проверяем, если нашли, значит корень извлекается.

Но для более сложных полей (например, для $\mathbb{Q}(\sqrt{2},\sqrt{3})$) такой способ не прокатывает: при возведении в куб коэффициенты при базисных векторах не разлагаются на множители. М.б. для квадратичных расширений еще можно попытаться использовать понятия делимости, но для расширений высших степеней этот прием в принципе не проходит.
Увы :-(

 
 
 
 Re: О тригонометрических функциях с углом, не кратным 3
Сообщение23.10.2015, 22:26 
Аватара пользователя
Из равенства $\sqrt[3]{\gamma+\delta i}=\alpha+\beta i$ возведением в куб получаем $\gamma+\delta i=(\alpha^3-3\alpha\beta^2)+(3\alpha^2\beta-\beta^3)i$. Приравнивая действительную и мнимую части, получим систему $$\begin{cases}\alpha^3-3\alpha\beta^2=\gamma,\\ 3\alpha^2\beta-\beta^3=\delta.\end{cases}$$ Случаи $\gamma=0$ или $\delta=0$ тривиальны, поэтому предполагаем, что $\gamma\neq 0$ и $\delta\neq 0$. В таком случае из данной системы легко получить кубическое уравнение, разделив первое уравнение на второе и обозначив $k=\frac{\gamma}{\delta}$ ($k$ не обязано быть целым): $$\frac{k^3-3k}{3k^2-1}=\frac{\gamma}{\delta},$$ $$k^3-3\frac{\gamma}{\delta}k^2-3k+\frac{\gamma}{\delta}=0.$$ Если подставить $k=z+\frac{\gamma}{\delta}$, то член с квадратом неизвестной исчезнет: $$z^3-3\frac{\gamma^2+\delta^2}{\delta^2}-2\frac{\gamma(\gamma^2+\delta^2)}{\delta^3}=0.$$ По формуле Кардано (или Тартальи—Кардано) $$z=\sqrt[3]{-\frac q2+\sqrt{D}}+\sqrt[3]{-\frac q2+\sqrt{D}},$$ где $p=-3\frac{\gamma^2+\delta^2}{\delta^2}$, $q=-2\frac{\gamma(\gamma^2+\delta^2)}{\delta^3}$ и $$D=\left(\frac p3\right)^3+\left(\frac q2\right)^2=-\frac{(\gamma^2+\delta^2)^2}{\delta^4}<0,$$ так что нам опять нужно вычислять корень третьей степени из комплексного числа.

Разумеется, это не доказывает, что проблему нельзя обойти, но заставляет задуматься. И мне смутно помнится, что мне где-то попадалось утверждение, что её действительно нельзя обойти.

Sonic86 в сообщении #1065912 писал(а):
А я, похоже, ошибаюсь. Смысл у меня было в том, что можно было бы все сводить к относительно легким диофантовым уравнениям, но это получается только для простых случаев.
Мне показалось, что задача ставится именно для поля действительных чисел. Хотя синусы-косинусы углов с целочисленной градусной мерой, видимо, всё-таки не совсем произвольные действительные числа.

 
 
 [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group