2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 3, 4, 5, 6, 7
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 15:56 


14/01/11
3041
Похоже, кое-какие результаты всё же были получены.
Взгляните-ка на этот чудный тетраундулоид, полагаю, его центральная часть может дать представление о капле, вписанной в тетраэдр. Вероятно, в случае куба будет что-то вроде октаундулоида.
http://arxiv.org/pdf/math/0207160.pdf


Вложения:
tetraunduloid.png
tetraunduloid.png [ 57.55 Кб | Просмотров: 0 ]
 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:28 
Заслуженный участник
Аватара пользователя


15/10/08
12523
Sender в сообщении #1032124 писал(а):
полагаю, его центральная часть может дать представление о капле, вписанной в тетраэдр
Не-а, не может. Не в ту сторону выгнута.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:33 


14/01/11
3041
В каком смысле? Кривизна постоянна везде, если что.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:36 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Форма - ладно, чёрт бы с ней. (Понятно, что она никак просто не описывается.) Я ответа на первоначальный вопрос то ли не вижу, то ли не понимаю, что это он. Теорема применима или нет? Круглая точка есть или нет?

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:39 
Заслуженный участник
Аватара пользователя


15/10/08
12523
Sender в сообщении #1032130 писал(а):
В каком смысле?

В том смысле, что это скорей капля описанная вокруг тетраэдра.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:46 


14/01/11
3041
ИСН в сообщении #1032132 писал(а):
Форма - ладно, чёрт бы с ней. (Понятно, что она никак просто не описывается.) Я ответа на первоначальный вопрос то ли не вижу, то ли не понимаю, что это он. Теорема применима или нет? Круглая точка есть или нет?

Круглая точка есть, изолирована, теорема неприменима, т.к. как раз-таки в круглых точках её и нельзя применять.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 16:57 
Заслуженный участник
Аватара пользователя


18/05/06
13438
с Территории
Тогда в чём заключается ценность теоремы? Она что-то стала смахивать на "сотрудник полиции никогда не совершает преступлений, потому что если совершает, то в тот же миг перестаёт быть сотрудником полиции".

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 17:09 


14/01/11
3041
Пардон, это я про теорему, на которой основано доказательство. Если же говорить про саму теорему из стартового поста, по моему скромному мнению, она попросту неверна.

(Оффтоп)

Нашёл-таки штуковину с симметрией куба, на том сайте ещё много всякого разного. Картинка большая, в img не помещается.
http://www.gang.umass.edu/gallery/cmc/resources/knoid/sixnoid-cube.png

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 17:23 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Да, красиво. Одно непонятно, как вот эти вот пузыри держатся, ведь у них кривизна то положительная, то отрицательная.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 17:25 


14/01/11
3041
Утундрий в сообщении #1032133 писал(а):
В том смысле, что это скорей капля описанная вокруг тетраэдра.

Так могло бы показаться, но взгляните на каплю, вписанную в трёхгранный угол (конечно, несмачиваемость не совсем идеальная):
http://dxdy.ru/post1028240.html#p1028240
Munin в сообщении #1032147 писал(а):
Одно непонятно, как вот эти вот пузыри держатся, ведь у них кривизна то положительная, то отрицательная.

Пузырей на самом деле нет, они физически неустойчивы, обрежьте всё, кроме центральной части.

-- Пн июн 29, 2015 17:28:18 --

И да, средняя-то кривизна у них постоянна, это только в одном направлении она меняет знак.

 Профиль  
                  
 
 Re: Теория поверхностей: кто ошибается?
Сообщение29.06.2015, 19:01 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Sender в сообщении #1032149 писал(а):
они физически неустойчивы

Вот и я про что.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 101 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group