2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 10:25 
Аватара пользователя

(Оффтоп)

Skeptic в сообщении #969046 писал(а):
Зайдём с азов.
Прямая разбивается на непересекающиеся отрезки. Какова мощность множества отрезков?
Даже каждый отдельный отрезок гораздо больше чем несчетное множество, т.к. в него входит континуум действительных чисел. А если несколько отрезков соберутся вместе, то получится вообще огромная силища.

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 10:30 
ИСН, спасибо за ответ, не ожидал. Я думал, что здесь могут только возражать.

Каждому отрезку можно сопоставить его длину. Эта длина выражается вещественным числом. Какова мощность вещественных чисел?

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 10:34 
Аватара пользователя
Континуум, разумеется, а что?

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 11:03 
Так какова мощность множества отрезов на прямой? Счётно или несчётно? Всё зависит от того, как считать. Очевидно, при счёте по длине, охватываются все точки отрезка, а по содержанию рациональных точек - только часть. И существуют отрезки, не содержащие рациональных точек.
При переходе к плоскости получаем области, не содержащие точек с рациональными координатами, в которых хватит место букве Т, и не одной.

Если серьёзно. Каждой букве Т на плоскости, можно приписать её площадь. Площадь может выражаться действительным числом, следовательно, множество попарно непересекающихся букв Т на плоскости - несчётно.

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 11:08 
Аватара пользователя
Skeptic в сообщении #969105 писал(а):
И существуют отрезки, не содержащие рациональных точек.
Приведите один такой. Приведите, пожалуйста.

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 11:15 
Если можно, два. Один заберу себе, другой подарю ИСН.
Skeptic в сообщении #969105 писал(а):
Каждой букве Т на плоскости можно приписать её площадь
Впервые, кстати, слышу, что площади приписывают. Скажите, а можно букве Т приписать площадь Ленина?

-- 27.01.2015, 19:17 --

Вам ответили на вопрос. Не сочтёте ли справедливым взамен осветить, что есть действительное число?

 
 
 
 Re: Задача с буквами Т
Сообщение27.01.2015, 11:46 
Аватара пользователя
Skeptic в сообщении #969105 писал(а):
Если серьёзно. Каждой букве Т на плоскости, можно приписать её площадь. Площадь может выражаться действительным числом, следовательно, множество попарно непересекающихся букв Т на плоскости - несчётно.
Тогда вот способ несчетно разбогатеть: каждому из двух кусков золота приписываем действительное число (вес в килограммах). Т.к. действительных чисел несчетное число, то можем считать, что и золота у нас несчетное число.

 
 
 
 Re: Задача с буквами Т, битая версия
Сообщение27.01.2015, 17:00 
ИСН в сообщении #969079 писал(а):
Счётно, разумеется, а что?

Не факт, кстати.

 
 
 [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group