Заслуженный участник |
|
30/01/06 72407
|
По поводу того, что такое математика, есть такое мнение: Цитата: Станислав ЛЕМ
СУММА ТЕХНОЛОГИИ
ГЛАВА ПЯТАЯ
ПРОЛЕГОМЕНЫ К ВСЕМОГУЩЕСТВУ (e) БЕЗУМИЕ, НЕ ЛИШЕННОЕ МЕТОДА Давайте представим себе портного-безумца, который шьет всевозможные одежды. Он ничего не знает ни о людях, ни о птицах, ни о растениях. Его не интересует мир, он не изучает его. Он шьет одежды. Не знает, для кого. Не думает об этом. Некоторые одежды имеют форму шара без всяких отверстий, в другие портной вшивает трубы, которые называет "рукавами" или "штанинами". Число их произвольно. Одежды состоят из разного количества частей. Портной заботится лишь об одном: он хочет быть последовательным. Одежды, которые он шьет, симметричны или асимметричны, они большого или малого размера, деформируемы или раз и навсегда фиксированы. Когда портной берется за шитье новой одежды, он принимает определенные предпосылки. Они не всегда одинаковы, но он поступает точно в соответствии с принятыми предпосылками и хочет, чтобы из них не возникало противоречие. Если он пришьет штанины, то потом уж их не отрезает, не распарывает того, что уже сшито, ведь это должны быть все же костюмы, а не кучи сшитых вслепую тряпок. Готовую одежду портной относит на огромный склад. Если бы мы могли туда войти, то убедились бы, что одни костюмы подходят осьминогу, другие - деревьям или бабочкам, некоторые - людям. Мы нашли бы там одежды для кентавра и единорога, а также для созданий, которых пока никто не придумал. Огромное большинство одежд не нашло бы никакого применения. Любой признает, что сизифов труд этого портного - чистое безумие. Точно так же, как этот портной, действует математика. Она создает структуры, но неизвестно чьи. Математик строит модели, совершенные сами по себе (то есть совершенные по своей точности), но он не знает, модели ч_е_г_о он создает. Это его не интересует. Он делает то, что делает, так как такая деятельность оказалась возможной. Конечно, математик употребляет, особенно при установлении первоначальных положений, слова, которые нам известны из обыденного языка. Он говорит, например, о шарах, или о прямых линиях, или о точках. Но под этими терминами он не подразумевает знакомых нам понятий. Оболочка его шара не имеет толщины, а точка - размеров. Построенное им пространство не является нашим пространством, так как оно может иметь произвольное число измерений. Математик знает не только бесконечности и трансфинитности, но также и отрицательные вероятности. Если нечто должно произойти наверное, его вероятность равна единице. Если же явление совсем не может произойти, она равна нулю. Оказывается, что может случиться нечто меньшее, чем просто ненаступление события. Математики прекрасно знают, что не знают, что делают. Весьма компетентное лицо, а именно Бертран Рассел, сказал: "Математика может быть определена как доктрина, в которой мы никогда не знаем, ни о чем говорим, ни того, верно ли то, что мы говорим" 1. Математика в нашем понимании является пантокреатикой, реализуемой на бумаге с помощью карандаша. Поэтому мы именно о ней говорим: нам кажется, что это она в будущем запустит "всемогущие генераторы" других миров. Конечно, мы от этого еще далеки. Вероятно также, что часть математики навсегда останется "чистой", или, если хотите, пустой, подобно тому как пусты одежды на складе сумасшедшего портного. Язык - это система символов, делающих возможным общение, так как эти символы поставлены в соответствие явлениям внешнего (гроза, собака) или внутреннего (печально, приятно) мира. Если бы не было действительных бурь и грусти, не было бы и этих слов. Повседневный язык нечеток, границы употребляемых в нем значений размыты; кроме того, язык как целое эволюционирует вместе с общественными и культурными изменениями. Дело в том, что язык является "неавтономной" структурой, так как языковые образования соотносятся с внеязыковыми ситуациями. В некоторых обстоятельствах язык может стать высокоавтономным ("Крылышкуя золотописьмом тончайших жил", "Тарарахнул зензивер") как благодаря поэтическому словотворчеству (приведенный пример), так и благодаря тому, что он становится языком логики и подвергается строгой муштре. Однако всегда удается проследить его генетические связи с действительностью. Что касается символов математического языка, то они не относятся ни к чему, кроме него. Шахматы несколько похожи на математическую систему. Они являют собой замкнутую систему с собственными основными положениями и правилами поведения. Нельзя задавать вопрос об истинности шахмат, так же как и нельзя спрашивать об истинности чистой математики. Можно лишь спросить, разыграна ли данная математическая теория или данная партия шахмат правильно, то есть в соответствии с правилами. Однако шахматы не имеют никакого прикладного значения, в то время как математика такое значение имеет. Существует точка зрения, которая эту практическую пригодность математики объясняет очень просто: Природа по самому своему существу "математична". Так считали Джине и Эддингтон; я думаю, что и Эйнштейну такая точка зрения также не была чужда. Это следует из его высказывания: "Herr Gott ist raffiniert, aber boshaft ist er nicht 2. Запутанность Природы - так я понимаю эту фразу - можно разгадать, поймав ее в сети математических закономерностей. Если бы, однако, Природа была злорадной - аматематичной, - то она представляла бы собой как бы злобного лгуна: была бы нелогичной, противоречивой, по крайней мере неопределенной в событиях, не поддавалась бы расчетам. Как известно, Эйнштейн до конца жизни возражал против принятия квантового индетерминизма и пытался в мысленных экспериментах свести его явления к детерминистическим законам. Начиная с XVI века физики перетряхивают склады с залежами "пустых одежд", создаваемых математикой. Матричное исчисление было "пустой структурой", пока Гейзенберг не нашел "кусочка мира", к которому подходит эта пустая конструкция. Физика кишит такими примерами. <...>
1 Б. Рассел, Новейшие работы о началах математики. Сб. 1, " Новые идеи в математике", Сп., 1913 (эта работа Б. Рассела напечатана впервые в "International Monthly" в 1901 г.). 2 Господь искушен, но не злобен (нем.).
|
|