2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 10:12 
Так, понил. Вы еще не нарешались самостоятельно. А онлайн телепатировать мысли Вам как-то не радостно. Порешайте еще. Частный случай порешайте. Общий не надо пока.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 10:16 
Аватара пользователя
Аналогично выводится через формулу Муавра, что $\cos nx=\cos^n x$, тогда отсюда и следует рациональность $\cos p\pi/q=\cos (p/q)\pi $.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 10:18 
maximk в сообщении #957147 писал(а):
Аналогично выводится через формулу Муавра, что $\cos nx=\cos^n x$

Не выводится. :(
maximk в сообщении #957147 писал(а):
тогда отсюда и следует рациональность $\cos p\pi/q=\cos (p/q)\pi $.

И тем более не следует.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 13:18 
Аватара пользователя
Вы очень торопитесь. Вот начали с $\pi/5$. Зачем там у Вас $q$? Разве оно не равно $5$? Перепишите. Про косинус уже говорили, что надо пользоваться основным тригонометрическим тождеством.
Когда будете рассматривать общий случай, пользуйтесь обозначением суммы $\sum$ и биномиальных коэффициентов $C_n^k$. Это сократит запись и сделает ее обозримой.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 14:02 
Аватара пользователя
Не, ребят. Можно закрыть тему, спасибо вам за помощь, но задачу я закинул. Бывает такое, что просто не видишь элементарное решение, приходится сидеть над задачей часов по 5 в то время, как можно взяться за задачу через какой-то определенный промежуток времени, и решение сразу увидится, когда будешь готов.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 15:11 
Аватара пользователя
Не вижу, зачем мучаться с косинусом, если синус уже изучен? (и наоборот).
Ведь $\cos \frac{p}{q}\pi=\sin\left(\frac\pi2-\frac{p\pi}{q} \right) = \sin\frac{(q-2p)}{2q}\pi$

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение06.01.2015, 15:19 
provincialka в сообщении #957258 писал(а):
Не вижу, зачем мучаться с косинусом
С косинусом как раз мучений меньше (вспомним про многочлены Чебышёва), а синус капризен, только нечётные степени ему подавай.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение07.01.2015, 09:48 
рассмотрим периодическую цепочку из одинаковых пружин и грузов. Частоты ее колебаний находятся из алгебраического уравнения на собственные значения соответствующей матрицы. С другой стороны, подставим анзатц плоских волн и увидим, что те же частоты даются синусами рациональных чисел со знаменателем, равным числу грузов. Ч.т.д.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение07.01.2015, 10:05 
Аватара пользователя
nnosipov в сообщении #957263 писал(а):
С косинусом как раз мучений меньше
Я на это намекала:
provincialka в сообщении #957258 писал(а):
(и наоборот)

Но ведь синус уже исследован.

 
 
 
 Re: Доказательство алгебраичности числа
Сообщение07.01.2015, 10:57 
provincialka в сообщении #957804 писал(а):
Но ведь синус уже исследован.
Не вижу. По-моему, ТС не справился с этой задачей.

 
 
 [ Сообщений: 55 ]  На страницу Пред.  1, 2, 3, 4


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group