2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 47  След.
 
 Re: Модифицировать программу (практическая помощь)
Сообщение11.07.2015, 19:01 
Аватара пользователя
Dmitriy40 в сообщении #1035849 писал(а):
У меня в программе поиск всех возможных КПППЧ занимает меньше 4% суммарного времени, остальное уходит на генерацию простых чисел. Мне кажется Вы погорячились, падение общей скорости (а не только лишь проверки на КПППЧ) будет намного меньше

Возможно и погорячился. :-)
Но, всё равно, падение скорости будет заметным, так как primesieve чертовски быстрый генератор простых и львиная доля времени уходит именно на проверку КПППЧ.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение11.07.2015, 20:24 
Аватара пользователя
whitefox в сообщении #1035845 писал(а):
Nataly-Mak в сообщении #1035612 писал(а):
whitefox
если вам не трудно, пожалуйста, добавьте в программу поиск КПППЧ длины 26.
Можно сразу добавить и 19-ку, и 28-ку. Чтобы с запасом :-)

Это снизит скорость вдвое.

Не поняла.

На 19-ку и 28-ку надо будет проверять только уже найденные 17-ки и 26-ки. Разве не так?
А 26-ка может получиться только если уже будет найдена 24-ка, как выше я привела пример проверки найденной 24-ки на 26-ку.
Так почему же снизится скорость вдвое :?:

Но в любом случе поиск 26-ки надо добавить (можно даже заменить 24-ку на 26-ку, так как 24-ка уже найдена).

-- Сб июл 11, 2015 21:27:53 --

maxal в сообщении #1035802 писал(а):
Nataly-Mak в сообщении #1035696 писал(а):
Думаю, что текущее первое место - это абсолютный рекорд. Очень компактное решение!

Абсолютный рекорд на компактность дается величиной A008407(16)=60. Существование соответствующей 16-ки простых следует из очень правдоподобной (но пока недоказанной) гипотезы Харди-Литтлвуда.

Однако из уже реально найденных КПППЧ длины 16 решение Jarek - это абсолютный рекорд компактности :?:

-- Сб июл 11, 2015 22:04:07 --

maxal в сообщении #1035802 писал(а):
При желании можно зафиксировать конкретные значения разностей (например, соответствующие минимальной длине 60) и просеивать простые числа... Jarek, скорее всего, так и делал.

Как действовали Jarek и Jens K Andersen можно посмотреть здесь
http://www.primepuzzles.net/conjectures/conj_042.htm

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 00:06 
Nataly-Mak в сообщении #1035903 писал(а):
maxal в сообщении #1035802 писал(а):
Nataly-Mak в сообщении #1035696 писал(а):
Думаю, что текущее первое место - это абсолютный рекорд. Очень компактное решение!
Абсолютный рекорд на компактность дается величиной A008407(16)=60. Существование соответствующей 16-ки простых следует из очень правдоподобной (но пока недоказанной) гипотезы Харди-Литтлвуда.
Однако из уже реально найденных КПППЧ длины 16 решение Jarek - это абсолютный рекорд компактности :?:
Нет, были найдены следующие КПППЧ длиной 16 с разницей менее 94:
556555980170339: 0 2 8 14 18 30 42 44 48 50 62 74 78 84 90 92
8326196049243557: 0 2 6 14 24 30 36 42 44 50 56 62 72 80 84 86
19636011281690647: 0 4 6 12 16 22 30 34 42 46 54 60 64 70 72 76
Но вот квадратов из них не собралось.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 00:25 
Аватара пользователя
Dmitriy40 в сообщении #1035969 писал(а):
Нет, были найдены следующие КПППЧ длиной 16 с разницей менее 94:...
Но вот квадратов из них не собралось.

Понятно, спасибо.
Тогда скажем так: пандиагональный квадрат 4-го порядка из последовательных простых чисел, найденный Jarek, составлен из самой компактной КПППЧ. На сегодня это рекорд, но, возможно, будут найдены и более компактные решения (в смысле квадратов).

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 01:55 
maxal в сообщении #1035802 писал(а):
Абсолютный рекорд на компактность дается величиной A008407(16)=60. Существование соответствующей 16-ки простых следует из очень правдоподобной (но пока недоказанной) гипотезы Харди-Литтлвуда.
Добавлю, доказательства теоремы и не требуется, 16-tuplet-ы найдены прямым перебором во множестве, три наименьших (найдены в 1996-1997 годах) начинаются с: 47710850533373130107, 347709450746519734877, 695874886175252911063. Из 22-х цифр их уже 14шт, из 23-х ещё больше. Информация из 3-го примечания в английской вики.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 05:50 
Аватара пользователя
Dmitriy40 в сообщении #1036004 писал(а):
Добавлю, доказательства теоремы и не требуется, 16-tuplet-ы найдены прямым перебором во множестве, три наименьших (найдены в 1996-1997 годах) начинаются с: 47710850533373130107, 347709450746519734877, 695874886175252911063.

Но это ведь не КПППЧ, если WolframAlpha не врёт:

Код:
Select[Range[0,60],PrimeQ[47710850533373130107+#]&]
{0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60}

Select[Range[0,60],PrimeQ[347709450746519734877+#]&]
{0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56, 60}

Select[Range[0,60],PrimeQ[695874886175252911063+#]&]
{0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60}

А мы вроде говорили о КПППЧ.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 07:19 
Про КПППЧ я писал выше:
Dmitriy40 в сообщении #1035841 писал(а):
КПППЧ длиной 16 возможны вообще лишь для k-tuplets размером 33, 34, 39, 40, 42, 47. Для первых двух разница в КПППЧ будет 74 (6 разных вариантов), для остальных 82 (10 разных вариантов). Ни из одной из этих КПППЧ нужный квадрат не собирается.
k-tuplets размером более 50-ти не проверял т.к. не имею их паттернов.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 07:27 
Аватара пользователя
Dmitriy40 в сообщении #1036004 писал(а):
maxal в сообщении #1035802 писал(а):
Абсолютный рекорд на компактность дается величиной A008407(16)=60. Существование соответствующей 16-ки простых следует из очень правдоподобной (но пока недоказанной) гипотезы Харди-Литтлвуда.
Добавлю, доказательства теоремы и не требуется, 16-tuplet-ы найдены прямым перебором во множестве, три наименьших (найдены в 1996-1997 годах) начинаются с: 47710850533373130107, 347709450746519734877, 695874886175252911063. Из 22-х цифр их уже 14шт, из 23-х ещё больше. Информация из 3-го примечания в английской вики.

Ещё раз.
maxal в своём сообщении писал о самой компактной 16-ке (60), которая является КПППЧ.
Для доказательства её существования нужно доказательство гипотезы Харди-Литтлвуда.
А приведённые вами 16-ки КПППЧ не являются, так что они не имеют никакого отношения к сообщению maxal.

-- Вс июл 12, 2015 08:40:01 --

Dmitriy40 в сообщении #1035969 писал(а):
Нет, были найдены следующие КПППЧ длиной 16 с разницей менее 94:
556555980170339: 0 2 8 14 18 30 42 44 48 50 62 74 78 84 90 92
8326196049243557: 0 2 6 14 24 30 36 42 44 50 56 62 72 80 84 86
19636011281690647: 0 4 6 12 16 22 30 34 42 46 54 60 64 70 72 76

Судя по этому сообщению, самая компактная КПППЧ длины 16 на сегодня

Код:
Select[Range[0,76],PrimeQ[19636011281690647+#]&]
{0, 4, 6, 12, 16, 22, 30, 34, 42, 46, 54, 60, 64, 70, 72, 76}

Begemot82
посмотрите, пожалуйста, свои результаты, может, найдёте более компактную 16-ку.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:17 
Nataly-Mak в сообщении #1036038 писал(а):
maxal в своём сообщении писал о самой компактной 16-ке (60), которая является КПППЧ.
Простите, но 16 последовательных простых чисел с разницей 60 никогда не образуют КПППЧ длиной 16. Просто потому что 16 последовательных простых чисел с разницей 60 являются 16-tuplet, который имеет всего два разных паттерна и оба КПППЧ не образуют. Других последовательностей из 16 последовательных простых чисел с разницей 60 в принципе быть не может. Никогда.
А гипотеза говорит лишь о существовании (и бесконечном количестве) таких последовательностей.
Во всяком случае я понял всё это так.
Думаю Вы спутали любимые КПППЧ и просто последовательности простых чисел (минимальной длины/разницы), гипотеза о вторых, а первыми похоже никто из математиков и не занимается ... :-(
Про КПППЧ длиной 16 с разницой 62..72 сказать ничего не могу, могут быть, могут не быть. С разницей 74 - существует (если существует 33-tuplet о чём как раз и утверждает гипотеза) и когда-нибудь будет найдена (возможно очень не скоро, нужен 33-tuplet, а пока найден лишь 21-й и в нём уже 29 цифр, хотя вполне может быть найдена и раньше 33-го и 34-го k-tuplet).

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:28 
Аватара пользователя
maxal в сообщении #1035802 писал(а):
Абсолютный рекорд на компактность дается величиной A008407(16)=60. Существование соответствующей 16-ки простых следует из очень правдоподобной (но пока недоказанной) гипотезы Харди-Литтлвуда.

Тогда maxal меня неправильно понял.
Я имела в виду не произвольные k-туплеты из последовательных простых чисел, а именно КПППЧ.
А в последовательности A008407, как я понимаю, говорится о произвольных k-туплетах из последовательных простых чисел.

Ну, я ведь и написала:
Nataly-Mak в сообщении #1036029 писал(а):
А мы вроде говорили о КПППЧ.

Наверное, о КПППЧ говорила только я :-)

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:28 
А maxal в своём сообщении писал что 16 последовательных простых чисел не могут иметь разницу меньше 60, в принципе и никогда. Не КПППЧ, а только 16 последовательных простых чисел.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:30 
Аватара пользователя
Dmitriy40 в сообщении #1036046 писал(а):
А maxal в своём сообщении писал что 16 последовательных простых чисел не могут иметь разницу меньше 60, в принципе и никогда. Не КПППЧ, а только 16 последовательных простых чисел.

А я разве где-то говорила о разности меньше 60? :shock:

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:35 
Nataly-Mak в сообщении #1036047 писал(а):
А я разве где-то говорила о разности меньше 60? :shock:
Вы говорили про "абсолютный рекорд" - а это выражение можно понимать по разному. Вот и он и я и Вы поняли все по разному. И он уточнил, что вообще-то абсолютным рекордом будет длина 60 и не меньше. Ну а я ещё уточнил, что и 60 не будет, только больше.

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 08:38 
Аватара пользователя
Nataly-Mak в сообщении #1035696 писал(а):
Обратите внимание на компактность КПППЧ
...
На первом месте по компактности решение Jarek, на втором - недавно найденное решение Begemot82.
Думаю, что текущее первое место - это абсолютный рекорд. Очень компактное решение!

Я говорила именно о КПППЧ. Не надо вырывать фразу из контекста.
Написано ясно: "Обратите внимание на компактность КПППЧ".

 
 
 
 Re: Модифицировать программу (практическая помощь)
Сообщение12.07.2015, 09:02 
Вы - да. А maxal нет. Он просто не проверил возможность составления КПППЧ из 16-tuplet. А меня заинтересовало и проверил.
К чему же относятся Ваши слова "абсолютный рекорд" - мне лично всё равно непонятно, то ли к любой КПППЧ длины 16 (и тогда Вы немного погорячились, оказалось уже найдены и с меньшей разницей), то ли к пандиагональным/ассоциативным квадратам. В последнем случае обоснуйте почему никогда не будут найдены пандиагональные квадраты с разницей меньше 94? Слово абсолютный имеет значение именно что никогда не меньше. Не пока и не ещё и не сейчас, а всегда. Вот разница 60 - да, именно абсолютный предел, на что maxal и указал. Именно с этим словом и неясность, которую мы поняли все по разному.

 
 
 [ Сообщений: 695 ]  На страницу Пред.  1 ... 9, 10, 11, 12, 13, 14, 15 ... 47  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group