2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 15:47 
Пример части ГМТ для исходных точек
Код:
[-11, -7; -20, 13; 4, 10; 1, -8]
. Черные кружки - исходные точки, красный - решение, пересечения в исходных точках - лишние корни. Если нигде не ошибся. Смущает зеленая линия - не проходит через одну исходную точку.

Изображение

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 15:58 
Vitalius в сообщении #888750 писал(а):
Интересно можем ли представить функцию $G_{TUVW}(x,y)$ как определитель достаточно простой матрицы восьмого ранга?
А какой был бы от этого толк?

-- 19.07.2014, 09:09 --

_Ivana в сообщении #888751 писал(а):
Черные кружки - исходные точки
Это основания перпендикуляров к сторонам четырёхугольника, т.е точки, заданные в условии задачи, да? А почему ГМТ должны через них проходить? Похоже, что это не всегда так.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 16:09 
Да толк был бы определенно. Очевидно $G_{TTVW}(x,y)=G_{TUVV}(x,y)=0$ для всех $x$ и $y$. Представление $G_{TUVW}(x,y)$ как определителя из матрицы восьмого порядка возможно поможет выявить другие случаи когда $G_{TUVW}(x,y)=0$ для всех $x$ и $y$.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 16:27 
Vitalius в сообщении #888758 писал(а):
другие случаи когда $G_{TUVW}(x,y)=0$ для всех $x$ и $y$.
Но эти случаи неинтересны с для исходной задачи.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 19:58 
mishafromusa в сообщении #888755 писал(а):
Это основания перпендикуляров к сторонам четырёхугольника, т.е точки, заданные в условии задачи, да? А почему ГМТ должны через них проходить? Похоже, что это не всегда так.
Вроде должны проходить. Для каждой из этих точек можно построить соответствующие касающиеся окружности, причём только циркулем и линейкой.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 20:26 
Если данные основания перпендикуляров находятся в вершинах прямоугольника, то ГМТ касания -- средние линии этого прямоугольника, и они не проходят через вершины.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 20:32 
Вот скрипт на Mathematica-е, с помощью которого можно изобразить кривые 4 порядка о чьих точек пересечения интересуемся

(Оффтоп)

Код:
dkx[r_, ra_,
   rb_] := {{2 r[[1]], 1, 0, 0}, {r[[1]]^2 + r[[2]]^2, r[[1]], r[[2]],
     1}, {ra[[1]]^2 + ra[[2]]^2, ra[[1]], ra[[2]],
    1}, {rb[[1]]^2 + rb[[2]]^2, rb[[1]], rb[[2]], 1}};
dky[r_, ra_,
   rb_] := {{2 r[[2]], 0, 1, 0}, {r[[1]]^2 + r[[2]]^2, r[[1]], r[[2]],
     1}, {ra[[1]]^2 + ra[[2]]^2, ra[[1]], ra[[2]],
    1}, {rb[[1]]^2 + rb[[2]]^2, rb[[1]], rb[[2]], 1}};
GTUVW[r_, rT_, rU_, rV_, rW_] :=
  Det[dkx[r, rT, rU]] Det[dky[r, rV, rW]] -
   Det[dky[r, rT, rU]] Det[dkx[r, rV, rW]];
r = {x, y};
rP = {-11, -7};
rQ = {1, -8};
rR = {4, 10};
rS = {-20, 13};
ContourPlot[{GTUVW[r, rP, rQ, rR, rS] == 0,
  GTUVW[r, rQ, rR, rS, rP] == 0}, {x, -100, 1000}, {y, -450, 550},
ContourStyle -> {Red, Blue}, PlotPoints -> 50]


В примере координаты точек $P$, $Q$, $R$ и $S$ те же самые, что и у _Ivana - соответственно $P(-11, -7)$, $Q(1, -8)$, $R(4, 10)$ и $S(-20,13)$. Кривые замкнуты. Область изменения $x$ и $y$ в примере выбрал так, чтобы были видны все две кривые. Само общее изображение выглядит так:

Изображение

Вот и интересующая нас область пересечения двух крив:

Изображение
без четырёхугольника $PQRS$

Изображение
вместе с четырёхугольником $PQRS$

И напоследок вся область пересечения двух крив (синяя кривая $G_{QRSP}(x,y)$ видна полностью):

Изображение

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:21 
mishafromusa в сообщении #888799 писал(а):
Если данные основания перпендикуляров находятся в вершинах прямоугольника, то ГМТ касания -- средние линии этого прямоугольника, и они не проходят через вершины.
Плюс окружность, описанная вокруг этого прямоугольника - для обеих кривых. Так что каждая кривая ГМТ тоже пересекает исходные точки.

-- 19.07.2014, 21:24 --

Vitalius, синяя кривая у меня такая же, красную (моя зеленая) не сравнивал, но скорее всего тоже та же - у меня возможно погрешности построения/округления... Только попросил бы вас в следующий раз устанавливать одинаковый масштаб по осям - так имхо пропорции фигур правильнее, а тем более углы.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:36 
_Ivana в сообщении #888814 писал(а):
...Так что каждая кривая ГМТ тоже пересекает исходные точки...


_Ivana, именно это и наблюдается. Ваша зелёная кривая должна быть той же, что и моя красная. Вы ведь говорили, что сравнивали Ваши формулы для ГМТ о которм интересуемся, с теми, записанные через определителей, которые я написал. Сказали, что сравнение показало одно и тоже.

Всё-таки, мне кажется, что Mathematica лучше чертает, чем MatLab. Что скажете?

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:41 
А нельзя ли показать четырёхугольники, соответствующие точкам пересечения диагоналей, совпадающим с каким-нибудь из из данных оснований перпендикуляров? Один из этих перпендикуляров вырождается в точку. Что-то я утомился, разбирайтесь дальше сами.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:45 
Vitalius Да, точнее Матлаб их сравнил и показал идентичность - мне было бы не так легко проверить руками такие формулы.
А про начертание кажу, что имхо в данном случае это зависит не от пакета, а от чертателя - я не придумал ничего лучше для построения кривой, как вычисление всех значений на прямоугольной сетке и вывод тех точек, значение функции в которых меньше порога. Подозреваю, что и на Матлабе при более оптимальном подходе можно начертать не хуже.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:51 
_Ivana в сообщении #888820 писал(а):
...про начертание кажу, что имхо в данном случае это зависит не от пакета, а от чертателя - я не придумал ничего лучше для построения кривой, как вычисление всех значений на прямоугольной сетке и вывод тех точек, значение функции в которых меньше порога. Подозреваю, что и на Матлабе при более оптимальном подходе можно начертать не хуже.


Да, наверное. Mathematica пропорции по вертикали и горизонтали автоматически вставить не как 1:1. И это иногда неудобно. Вы же сказали, что лично Вам это не понравилось. И есть у Вас основания. Ибо для нас важно сохранение углов в чертежах.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 21:56 
mishafromusa, там получаются бесконечно удаленные точки - вершины получающегося четырехугольника. В моей системе изначально есть знаменатели - один из них обращается в ноль при таком случае, и эти точки не являются корнями. А в системе через определители знаменателей нет, моя система получается совпадающей только при избавлении от знаменателей.

-- 19.07.2014, 21:59 --

Vitalius в сообщении #888821 писал(а):
Вы же сказали, что лично Вам это не понравилось. И есть у Вас основания. Ибо для нас важно сохранение углов в чертежах.

Да, у меня есть некоторые основания - я когда только написал скрипт, полчаса искал ошибку в своем правильном коде, думал почему у меня перпендикуляры не перпендикулярные. Потом догадался, что это из-за автомасштаба по осям. С той поры обращаю на это пристальное внимание :lol:

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 22:09 
_Ivana в сообщении #888822 писал(а):
mishafromusa, там получаются бесконечно удаленные точки - вершины получающегося четырехугольника.
Т.е. это какие-то вырожденные случаи, когда вершины убегают на бесконечность, так? А в исходной задаче спрашивалось про настоящий четырёхугольник.

 
 
 
 Re: Задача о четырехугольнике
Сообщение19.07.2014, 22:32 
Хм, оказывается есть случаи кривые "распадаются" на несколько пересекающихся кусков. Такое наблюдается для рационального решения системы квадратичных форм, которое дал раньше, а именно:

Vitalius в сообщении #888296 писал(а):
Написал скрипт на Mathematica-е, для исследования точных корней задачи TC. Скрипт основывается на системе квадратичных форм, которой предложил. Вот одно рациональное решение с "несиметричными" четырёхугольниками $PQRS$ и $ABCD$:

$(x_{P},y_{P})=(0,0)$; $(x_{Q},y_{Q})=(1,0)$; $(x_{R},y_{R})=(2,2)$; $(x_{S},y_{S})=(-1,1)$;

$(x_{A},y_{A})=(-\frac{16}{15},\frac{8}{15})$; $(x_{B},y_{B})=(\frac{3}{5},-\frac{3}{10})$; $(x_{C},y_{C})=(\frac{13}{5},\frac{6}{5})$; $(x_{D},y_{D})=(-\frac{2}{5},\frac{26}{5})$; $(x_{K},y_{K})=(\frac{2}{5},\frac{4}{5})$.


Картинка с двумя кривыми вместе с четырёхугольником $PQRS$ в этом случае такова:

Изображение

Прошу прощения о том, что масштабы по вертикали и горизонтали разные! AspectRatio->1 не помогает ибо Mathematica вставить это отношение для концов изображения по горизонтали и вертикали. Так или иначе, видно, что синяя кривая "распадается" на две кривые. Может быть все 3 кривые в этом вырожденном случае - окружности?

 
 
 [ Сообщений: 88 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group