trarbishСобс-но, тип Вашей системы это какое-то классифицирование полинома

где переменные

,

,

соответствуют Вашим первой, второй и третьей независимой переменной.
Если вещественные нули многочлена это только

, система эллиптическая (рискну предположить - пусть опытные товарищи поправят - если многочлен даже и вещественно неприводим, то это какой-нибудь сильно эллиптический случай (здесь этого, очевидно, быть не может)).
Если, наоборот, многочлен по максимуму раскладывается на множители, это гиперболический случай. Ну и вырожденные параболические.
Как-то так.
Только в отличие от одного уравнения второго порядка или системы двух первого, здесь вариантов может быть больше, классификация не такая простая. Вот и смотрите, как фишка ложится.
Кстати, что это Вы пугали :) я и правда поверил, что общий случай ни в каком учебнике не описан. На самом деле, в Куранте это есть.
-- Пт май 23, 2014 22:29:53 --Munin(Оффтоп)
Уфф! Это Вы широко зачерпнули.
К сожалению, эллиптические задачи я вообще не знаю (задача Дирихле, задача Неймана, вот и все мои познания).
Ну, попытаюсь прокомментировать, исходя из.
Поставленные задачи (часть из них) представляются вполне разумными и осмысленными. Очень вероятно, что что-то из этого уже рассматривалось, но я, увы, не знаком, даже не знаю, по каким словам гуглить.
Второе общее соображение: я бы попробовал для начала прокатать все на уравнении о двух независимых переменных

, т.к. для него все явно выписывается.
Теперь по пунктам:
1. Думаю (это моя гипотеза :), задачу для такой системы надо ставить в виде

на границе области, условий столько же, сколько зависимых функций, порядок производной каждой в условиях меньше максимального в системе. Условия вполне могут быть и нелинейными при линейной системе.
1.1. Разумная постановка задачи, но ни о каких результатах в этом направлении не слышал.
1.2. Тут непонятно. С чего бы?
2. Мне скорее кажется возможным наоборот свести задачи с ненулевыми краевыми условиями к задаче с правой частью (с дельтами) и нулевыми краевыми условиями.
3. Тут не понял. Можете привести пример такого преобразования?