И я у товарищей вообще не могу найти правил вывода для логики второго порядка и определения значка

. Раз вы читали, то вам наверное будет проще дать ссылку на эти части?
Дж. Булос, Р. Джеффри "Вычислимость и логика"
Гл.9. «Логика первого порядка: напоминание». Пример 9.4 (Предложение 9.1) – после его доказательства:
Цитата:
Для обозначения общезначисмости предложения

мы пишем

, а записью

показываем, что из

следует

, то есть, что вывод из

(в качестве посылки) утверждения

(в качестве заключения) является общезначимым.
Логическое следование:

тогда и только тогда, когда для всякой интерпретации

, служащей одновременно интерпретацией и для

и для

, из условия

следует, что

.
Пример 9.3 из той же главы, абзац перед перечислением «Случай 1 …» и т.д.:
Цитата:
Напомним, что предложением называется всякая формула без свободных вхождений переменных.
Еще информация, которая может потребоваться из предметного указателя для понимания формулировки теоремы о изоморфизме:
Глава 18 «Логика второго порядка») Теорема 18.1.
Цитата:
Любая интерпретация языка

, являющаяся моделью для

, изоморфна

.
Модель предложения(й) – стр. 143 (Гл. 9 «Логика первого порядка: напоминание», сразу после доказательства Примера 9.5).
Интерпретации изоморфные – стр. 253 (начало Гл.17 «Нестандартные модели арифметики»)
Интерпретация – стр. 134, 135
Интерпретация языка арифметики стандартная

– стр. 135, 214
Так вот, «Интерпретации изоморфные» — это если есть такой переход между интерпретациями, что истинность/ложность на соответствующих значениях и соответствующих предикатах сохраняется.
А модель для предложения (

) – это такая интерпретация, на которой данное предложение истинно.
Пока что у меня есть впечатление, что вы, говоря про полноту арифметики второго порядка, подразумеваете что во всех моделях

второго порядка выполнены те и только те утверждения, которые выполнены в

. Это правда.
Я же, говоря о неполноте, имею в виду, что для любой эффективной корректной дедуктивной системы второго порядка существует утверждение, такое что ни оно, ни его отрицание этой системой из аксиом

второго порядка не выводится.
Дедуктивной (в смысле допускающей перебор всех доказательств) системы для теорий второго порядка нет – Вы это и сами написали в следующем своём комментарии. В отношении же предложений (без свободных переменных) рассмотрим некоторую модель для

. Как в каждой интерпретации в ней для «неполного» утверждения есть характеристическое 1 для утверждения или (исключающее «или») отрицания. Истинное утверждение из этих двух назовём

. Рассматриваемая интерпретация будет моделью для

. И в силу теоремы о изоморфизме у

есть аналог для

– тоже истинный. То есть тут полнота и в Вашем смысле – хоть и с точностью до переименования, возможно.
Возможность ставить кванторы по произвольным функциям увеличивает выразительность. Возможность ставить кванторы по вычислимым функциям - нет.
Не улавливаю смысл – кванторов по «вычислимым функциям» отдельно от остальных нет. Возможно, у Вас какая-то опечатка. А вообще выразительность очень вырастает. Даже простой пример – равенство можно не аксиоматизировать, а определять в логике 2-го порядка.
Интересно разобрать отличие 1-го и 2-го порядка на примере проблемы остановки. (Типичная неполнота в теориях 1-го порядка для арифметики). О «существовании» моментов после остановки (номер шага, на котором алгоритм «уже» не выполняется).
Ключевое в полноте модели для

– это изоморфизм с той интерпретацией, где есть только натуральные числа. Поэтому нет интерпретаций, в которых алгоритм не останавливается вообще, но при этом есть такие числа (действительные, но не натуральные), которые не соответствуют ни одному шагу работы алгоритма, когда он ещё работает. А это означает, что следование из PA для утверждения о том, что данный алгоритм не остановится – это логическое следование (общезначимое) для любых алгоритмов, которые не останавливаются.
Доказательство не категоричности теорий 1-го порядка для арифметики построено на наличии несводимых друг к другу вариантов интерпретаций – как счётной, так и несчётной (теорема Лёвенгейма-Сколема). И если теория 1-го порядка может «убежать» в несчётный вариант интерпретации от счётного (хоть такое расширение и перестаёт быть теорией для арифметики, но имеет смысл в действительных числах, например), то

может пытаться «убежать» от счётной бесконечной области только в область конечную, а это безнадёжная попытка :)
Из-за НЕ категоричности теорий 1-го порядка (для арифметики) и появляется почва для теорем Гёделя о неполноте – вопрос о «существовании» должен быть решен какой-то конкретной аксиомой, иначе здесь нет однозначной истины и какое-то действительное число, которое не будет шагом работы программы – тоже есть. Я же писал, что доказательство неразрешимости для Пеано не опирается в принципе на её эффективную аксиоматизированность – доказательство пройдёт и для теории 2-го порядка. Но лишь из-за наличия теоремы Гёделя о полноте для теорий 1-го порядка выясняется неполнота в наборе их аксиом. А вот полнота теории 2-го порядка для арифметики вместе с неразрешимостью как раз и приводит к выводу об отсутствии чего-то аналогичного теореме Гёделя о полноте в отношении предложений, «логически следующих» из

.
Тем не менее в можно написать такую арифметическую формулу

, что она доказуема в

тогда и только тогда, когда

- код алгоритма, останавливающегося на входе

с выходом

за время

.
Да, конечно. Эта теория не менее выразительна чем примитивная Z (для которой Пеано - расширение и в которой нет даже аксиом индукции), в которой нельзя доказать даже коммутативность сложения и кучу простейших свойств чисел, но любые алгоритмы представить – можно. В том числе и эмулятор произвольных алгоритмов, отсчитывающий время их работы, чтобы учесть и его в результате своей работы (1 или 0).
Предлагаете устроить спор об определении определения?)
Определение. Определением (в данной теории) называется строка вида "

y

z$".
Не, ну это уже перебор ))) То, что справа – должно соответствовать какой-то теории, иметь какой-то смысл ))
Кому "вам"?

Поскольку обычно всё равно работаем в какой-то окрестности ZF, то определять в ее терминах всё вполне удобно.
Установить биекцию между линейными порядками на конечных мультимножествах и функциях из начально отрезка натурального ряда в алфавит - тривиально.
О каких «определениях», касающихся формальных языков Вы говорите? Их просто нет. Иначе Вы не пытались бы сформулировать их сами – с ошибками, что вполне нормально для начальных попыток. И не задавали бы мне вопрос о том, что такое внутреннее слово – но знали бы сами этот ответ. Я понимаю, что Вы не уверены в себе и думаете, что в «закромах формализма» есть какие-то определения.
Такое у нас общество со времен СССР – не желающее хвалить людей за их самостоятельность – отсюда запуганность и негативизм. Хотя никакого другого «протокола» объединения людей в общество кроме одобрения в общении просто нет. Я, кстати, стараюсь высказывать Вам одобрения – может недостаточно, но и у меня было очень негативное начало жизни, чтобы научиться этому раньше, но я стараюсь это наверстать.
И был бы признателен, если бы и Вы были немного доброжелательней в отношении меня – я не безынтересные вещи всё же тут пишу и ведь не ради денег – так иметь хоть немного одобрения в свой адрес было бы лишь справедливо. Если нет, то я и на чувстве долга доведу разбор предмета данной дискуссии до внятного результата (с божьей помощью) – но это будет дольше, и тогда некоторые социальные проблемы будут занимать меня ещё сильнее – в ущерб математике.
Так вот, не было для термина «слова» до сих пор никакого ни определения, ни теории. Если есть – давайте его сюда. Но – нет. Мы тут делаем необходимое дело, создавая формальные основы для теории языков, отсутствие которой столь долгое время – принципиальная ошибка и она должна быть устранена. Параллельно разбирая некоторые заблуждения, которые разобраны в логике, но снова цветут в не формализованной пока сфере формальных языков.
Ваше «определение» не годится по той причине, что ему не соответствует даже такая простая интерпретация как «символы в клеточках на фанерке в одну линейку».
Вот смотрите – можно каждой клеточке (началу) сопоставить расстояние от начала фанерки – можно даже использовать не линейную линейку (любую шкалу с общей мерой). Но что произойдёт, если мы распилим эту фанерку между некоторыми клеточками? Эта «нумерация» исчезнет – будет не ясно, где начало и что за чем было.
В вашем «определении» у каждой клеточки есть номер (пусть он и допускает перенумерацию по всему слову, но он есть) и порядок имеется даже в «не сплошном» множестве «отрезков». Это не соответствует приведённой мной интерпретации. А она соответствует здравому пониманию «слова» как упорядоченной сплошной цепочки символов.
Моя интерпретация опирается на связь «взявшись за руки» - я вижу, что у данной клетки в начале – тёмный сучок, а у второй – трещина в форме крестика, а у третьей – торчит двойная заноза. Вот в чём порядок (локальный! Это не нумератор) – каждая клетка имеет свой признак и расположена (связана фанерой) за клеткой со своим признаком. Если я разрезаю фанерку на корректные отрезки, то глобальный порядок не сохраняется, но внутри сплошных отрезков – он прежний и так же связан фанерой. И да, я могу менять идентификаторы – заметив некие другие уникальные признаки у клеток, или даже нарисовав их.
Вы сами признали, что не знаете, как определить то предложение, для которого моя интерпретация (слова, представленные как стек) была бы моделью. Но в таком случае Вы не можете – по крайней мере пока – дать нужное определение, допускающее одну из правильных (мою) интерпретаций слов в качестве своей модели. И не Вы один этого не можете – а всё математическое сообщество пока что. Хотя с момента формулировки гипотезы

прошло уже сколько? Около 50 лет? Так, может, пора уже признать необходимость составить теорию с соответствующими аксиомами? Раз с «определениями» никак не складывается? К тому же это азы математики – базовые понятия не определяются, а просто составляются аксиомы, отражающие их свойства.
И я вовсе не «корчу из себя самого умного», а просто констатирую факт – тупик, в который зашли математики в сфере формальных языков, необходимость его преодоления и, прилагаю конструктивные усилия для этого. Так поддержите эти усилия, и будете ещё лучше выглядеть позже в истории математики ))))
Тут же не вопрос предпочтения большинства – математика – это ведь не демократия кого ни попадя, а монархия истины. И если я прав (а я думаю, это так, что дискуссионно, конечно), то моя (пусть даже меня забудут, не о том речь) точка зрения будет признана правильной в итоге, даже если «против» десять миллиардов, а «за» - один только я пока что. Так давайте «за» будем хотя бы мы двое ))))) Не волнуйтесь, сейчас не времена Джордано Бруно ;)))) И даже не Гаусса, который знал про неевклидову геометрию, но не решился высказаться, так как опасался «криков беотийцев». Да и вопрос формализации языков и близко не такой «революционный» как в приведённых примерах.
Кстати, как Вы видели выше, для теории первична интерпретация – теория же служит лишь формальным представлением для неё, поэтому приводившаяся Вами идея «определения не бывают ошибочными» - ошибочна. И, кстати, чего же Вы тогда спрашиваете меня об аксиомах – и «аксиомы не бывают ошибочными» тогда )) Если мы исключим случай противоречивости, конечно. Но по противоречивости и определения бывают ошибочными («множество всех множеств», например).
Да и вообще, сильно сомнительно, что можно дать определение термину «слово» через теорию множеств, да и заведомо нельзя дать такое определение на базе теории 1-го порядка. Я сейчас поясню, но Ваша теория множеств – какого порядка? То, что видел я (NBG) – первого порядка.
Так вот, «слово» по своей сложности не уступает «числу». Действительно, 567842 – это слово. И можно задать (определить!) всякие математические операции над такими словами. Более того, такие «специальные слова» удовлетворяют арифметике второго порядка! И как такие объекты могут быть выражены («определены») теорией множеств – теорией первого порядка? Ответ один – никак.
Если же оперировать теорией второго порядка – то, да, у нас есть арифметика. Но есть доказательство того, что теория 2-го порядка для арифметики вместе с теорией множеств позволяет создать теорию 2-го порядка для слов? Не используя для этого новых аксиом? Совсем не факт, что «слово» не является более выразительным объектом, чем число и что теория множеств достаточная добавка для выравнивания выразительностей. А даже если это и так, то у нас есть эквивалентный переход (определения от к в обе стороны) между словами и натуральными числами (хотя тут надо было бы решить вопрос аксиоматизации для слов без использования чисел). И вполне можно числа определять через слова (выполнив аксиоматизацию без чисел - но, возможно, тут потребуется что-то из "идентификаторов" для стека - со своими аксиомами). Тут, кстати, потребуется ещё вводить соответствие между бинарной (где нужен порядок) и унарной (где порядок не требуется) интерпретациями для чисел в их определении через слова – если такое определение возможно.
То есть, определение через числа (и теорию множеств) для слов не сделает картину проще, а изначально загонит её в непрактичную логику второго порядка, да ещё и с необходимостью доказать сводимость туда-сюда. А чтоб получить инструмент из теории второго порядка – всё равно придётся делать аналог аксиоматики для слов. И к чему тогда такой окольный путь? На основе стандартной интерпретации (моей, например) для слов можно просто сделать востребованные аксиомы первого порядка для теории слов и не решать бездну весьма сложных вопросов с определением в рамках теории 2-го порядка – если такое определение вообще возможно.
Вообще-то попытка «определить» слово через теорию множеств напоминает те исторические «грабли», когда Рассел и (кажется) Уайтхед пытались определить число при помощи теории множеств. Написали толстую книгу. И уже перед публикацией им указали на ошибку – для построения чисел они использовали «множество всех множеств». Что противоречиво, а из противоречия можно вывести что угодно. Я выше объяснил (на основе достижений в логике 2-го порядка, которых не было во времена Рассела), почему подобная попытка безнадёжна – нельзя определить понятие со сложностью из логики 2-го рода в рамках теории 1-го рода.
И кроме всего сказанного совершенно неправильно подтягивать теорию множеств туда, где можно и нужно обойтись без неё. Слова – это просто строки. А понимание строк востребовано массой программистов, которым теория множеств сто лет не нужна. Есть программисты (их очень мало), которым нужна теория множеств, но загонять всех (подавляющее большинство) к ненужной им теории, чтобы получить нужную теорию, и пользоваться свойствами строк, которые могут быть получены независимо от теории множеств? Это было бы крайне расточительно и не разумно.
Теория множеств вообще довольно невнятная – у неё даже стандартной интерпретации нет – со слов Someone. Так что если без неё можно обойтись, то без неё нужно обойтись, да и не получится «определение 1-го порядка», как было обосновано, а пользоваться чем-то из логики 2-го порядка крайне проблематично. Так что всё равно дело сведётся к теории 1-го порядка – а в ней никаких определений 2-го порядка нет, вот и получается, что аксиомам первого порядка для теории языков и неопределяемому понятию «слово» альтернативы нет.
Даже из-за наличия такого принципиального вопроса как гипотеза

есть все основания взять менее сложный подход, изгнав теорию множеств и имея дело лишь со специализированной на словах теорией. Просто чтоб десятилетия не «ломать мозги» себе, путаясь в ненужном постороннем аппарате теории множеств.
По-русски это называется "подстрока". И подстрока, конечно, является строкой.
У вас кстати

или нет?
Так строка – это и есть слово. Упорядоченная последовательность символов. В Вашей формуле опечатка – одна запятая пропущена? Даже цитирование не сработало - пришлось вручную переписывать. Но судя по длине строки (первый аргумент) на выходе слева будет строка (подстрока) длиной 2, а справа – длиной 1. Они не равны, конечно. Вот если бы строковый аргумент в обеих сторонах был «a», например (из одного символа), то было бы равенство. Посмотрите аксиому для равенства слов – там всё есть.
Из этого вы вырулили на "внутренние слова" и "нужду анализировать", но даже после добавления "внутренним словом будем называть произвольную подстроку" дальнейшие рассуждения непонятны.
Да всё там понятно )) Можно придраться к тому, что на вход подаётся утверждение и аргументы предельного размера доказательства, а часть информации – код алгоритма. И, типа, если подать ещё и иной программный код на вход, то будет всё иначе. Но раз требуется решение для произвольных утверждений и размеров, то остальные аргументы должны быть фиксированы, а это сводит дело тоже к программному коду. Просто этот программный код включает в себя несколько фиксированных аргументов, например. Фишка в том, что язык можно сделать заведомо шире алгоритма и на любой Sol заранее предусмотреть нерешаемый для него

. Это и сделано.
Как только обнаружена Аксиома рефлексии, так оказывается возможным переносить глубокие негативные результаты из формальной логики в теорию алгоритмов. Да и тут для меня просто мировоззренческие вопросы – как «живое» чувствует свою самостоятельность (чувства и мысли приходят «сами»), как это вяжется с подчинением законам природы – парадокс Лапласа тоже решается. К чему приводит осознание себя (вспомните парадокс коменданта крепости, который я приводил) и масса вопросов на тему жизни и смерти становятся доступными для анализа и решения.
А Вы всё отсылаете к «обычным определениям слова», которых нет )) Шучу, конечно – будем разбираться, раз у формалистов есть вопросы к формализации понятия «слово» и эта формализация не была сделана раньше. Думаю, всё лето и начало осени уйдёт на это обсуждение. Впрочем, я не уверен в этом прогнозе – плохо я Вас понимаю, но пытаюсь ))