так там же всё верно написано если под теоремой Биркгофа понимать её устаревшую версию
Нет. Там и "устаревшая" версия сформулирована некорректно (без необходимых условий), и нигде не сказано, что это устаревшая версия. Наоборот, явно утверждается, что это именно та версия, которой все пользуются:
Бурланков на стр. 284 писал(а):
В ОТО царствует теорема Биркгофа, утверждающая, что вакуумное сферически-симметричное решение обязательно является статическим и представляется метрикой Шварцшильда.
Не надо изворачиваться.
Попытка "тот примерчик" отобразить на всё пространство Шварцшильда приводит к отрицательным значениям подкоренного выражения, то есть к комплексному преобразованию, которое в ОТО запрещено. В современной-грамотной трактовке теоремы Биркгофа отображение на всё пространство Шварцшильда не требуют, а довольствуются частью, как раз той частью в которой в "том примерчике" подкоренное выражение отрицательным не становится.
Вы очень настойчиво повторяете эту глупость. Что, в самом деле не понимаете, что такое область определения функции? Там, где у Бурланкова подкоренное выражение отрицательно, написанная им метрика не существует. При этом она покрывает не всё многообразие Шварцшильда. Естественно, там, где метрика не существует, никакие преобразования не нужны.
В ОТО комплексное преобразование координат не запрещено. Просто невозможно подставлять в функцию элементы, не принадлежащие её области определения. За такое в любой области математики бьют. Слово "часть" в формулировке теоремы Биркгофа в МТУ появляется совершенно по другой причине. Возьмите, например, гравитационное поле звезды. Внутри звезды своя метрика, а вне её — шварцшильдовская. Никаких корней в формулах нет вообще, не говоря уж об отрицательных подкоренных выражениях. Однако шварцшильдовская область всё равно является только частью полной геометрии Шварцшильда.
Вы уклоняетесь от ответов на вопросы. Может быть, всё-таки ответите?
Здесь же речь идёт просто о том, что ежели подкоренное выражение в выражении для метрики оказалось отрицательным, то, дескать, метрика всё равно существует, только она комплексная. И приводится к какому-то виду комплексной заменой координат.
Все знают, как на плоскости
найти точку с координатами
. Но нам предлагают поискать там точку с координатами
, где
— мнимая единица.
SergeyGubanov, объясните нам всё-таки, где Вы будете искать в плоскости
точку
. Раз Вы делаете комплексную замену координат, то есть, заменяете исходные вещественные координаты комплексными выражениями, то должны уметь отвечать на этот вопрос.
По поводу правильности названия темы. Прочтите внимательно. Бурланков приводит два контрпримера к теореме Биркгофа.
Первый — в пункте 2.1, и это настоящий контрпример к той некорректной формулировке, которую Бурланков в самом начале главы 12 объявляет "царствующей в ОТО". Более того, далее он явно утверждает, что этот контрпример нельзя преобразовать к стандартной шварцшильдовской форме:
Бурланков на стр. 289 писал(а):
Однако мы уже рассмотрели нетривиальное однородное решение, в котором переменная
одинакова во всём пространстве и поэтому не может служить координатой в пространстве.
Второй — метрика (12.11), о которой Бурланков пишет, что при
её в некоторой области нельзя преобразовать к стандартному виду:
Бурланков на стр. 289 писал(а):
…при
принимает чисто мнимые значения. Поэтому теорема Биркгофа верна
только при допущении комплексных преобразований координат и времени.
Использовать комплексные преобразования координат, которые (координаты) определены как вещественные, принципиально невозможно. Поэтому заявление Бурланкова, если оно верно, означает, что теорема Биркгофа неверна.
Предъявление даже одного контрпримера к какому-либо утверждению автоматически означает, что это утверждение ложно. В частности, доказать его нельзя, и если кто-то, тем не менее, предъявляет доказательство, то он ошибается. Если Бурланков прав со своими контрпримерами, то его же собственное доказательство теоремы Биркгофа в пункте 2.4 однозначно является ошибочным. А Бурланков (да и Вы вместе с ним) настаивает, что он прав. Поэтому и я прав: Бурланков действительно опровергает теорему Биркгофа.