2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6 ... 9  След.
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 10:47 
Аватара пользователя
Munin в сообщении #977597 писал(а):
Ему обычно достаточно объяснить, что это такое, и он поймёт.
Я тоже сначала так думала... Но не срослось. Какие только дикие вещи он не писал...

Но даже и без этого крайнего случая, я сильно подозреваю, что математике (особенно "настоящей") можно научить далеко не каждого. Это все-таки некоторое извращение нормального способа мышления.

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 16:42 
Аватара пользователя
provincialka в сообщении #977600 писал(а):
Это все-таки некоторое извращение нормального способа мышления.

Вот это, кстати, интересно - в чём Вы видите ненормальность? Мне в силу своей математической глухоты приходилось делать только простые вещи, но таки да, это требует у меня какого-то особого состояния души. Совсем не похоже на "игру в значки".

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:12 
Аватара пользователя
Мое мнение исключительно дилетантское. Но мне кажется, что основная трудность математики -- в ее формальности. Ну не рассуждают так люди. Для меня неким "ярко математическим" объектом является, например, пустое множество. Зачем оно нужно в обыденном сознании? Если ничего нет, то и говорить не о чем. А математики специальный значок придумали, и даже на основе пустого множества строят натуральные числа!

(Оффтоп)

Не помню, может, уже рассказывала. Сыну лет 5, он расхвастался: "Я всех сильнее". Потом задумался и говорит: "Нет, так говорить нельзя. Если я всех сильнее -- то сильнее и самого себя. А этого быть не может". Я чуть не села!
Кстати, при рассказе о свойствах отношений труднее всего придумать пример обыденного рефлексивного отношения: ну нет таких понятий в языке.

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:18 
Аватара пользователя
Я доказательство имел в виду. Ну вот не последовательно же оно в голову приходит! Сперва сидишь, втыкаешь, ничего не получается. Потом какое-то предчувствие возникает, что вот, вроде туда. Потом записываешь его от начала и до конца. Потом смотришь - ошибка. Думаешь, что не так и можно ли обойти. Следующая итерация. Нет?

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:26 
Аватара пользователя
AlexDem
По-моему, вы хорошо описали. Только при чем же тут математика? Наверное, и стихи так же пишут, и музыку сочиняют.
Особенность математики в том, что слово "очевидно" считается практически непристойным. И все, что "нормальным" людям очевидно, математики доказывают, создавая целые тома непонятных рассуждений :P

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:28 
Аватара пользователя
provincialka в сообщении #977785 писал(а):
непонятных рассуждений :P

для кого - как :P

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:37 
Аватара пользователя
provincialka в сообщении #977775 писал(а):
Ну не рассуждают так люди. Для меня неким "ярко математическим" объектом является, например, пустое множество. Зачем оно нужно в обыденном сознании? Если ничего нет, то и говорить не о чем.

Да уж, примерно так же, но на более простом уровне, трудно освоить число нуль. "У меня нет яблок" - почему-то можно сказать как "у меня есть яблоки, их число нуль".

Мне приходит в голову, что это трудность ещё и такого порядка: мы привыкли делить множества на непересекающиеся подмножества, и называть их отдельно. А в математике чаще встречается соотношение типа "множество и его подмножество, с соответствующими названиями". Общий случай и частный случай. И вот этот подъём до обобщения - тяжёл.

(Оффтоп)

Сюда же и история с сыном и его высказыванием "я всех сильнее". Можно его ослабить до "я всех не слабее".


AlexDem в сообщении #977777 писал(а):
Я доказательство имел в виду. Ну вот не последовательно же оно в голову приходит! Сперва сидишь, втыкаешь, ничего не получается. Потом какое-то предчувствие возникает, что вот, вроде туда. Потом записываешь его от начала и до конца. Потом смотришь - ошибка. Думаешь, что не так и можно ли обойти. Следующая итерация. Нет?

Это, мне кажется, характерно для решения любой творческой задачи.

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:41 
Аватара пользователя
Munin в сообщении #977794 писал(а):
Это, мне кажется, характерно для решения любой творческой задачи.

Наверное. Хотя от длины пути зависит. Через неизвестность.

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 17:53 
Аватара пользователя
Munin в сообщении #977794 писал(а):
трудно освоить число нуль.

- Есть ли у крокодила крылья?
- Есть, но их число равно 0.
Ноль, единица и пустое множество -- это основа математики.

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 18:21 
provincialka в сообщении #977775 писал(а):
"Нет, так говорить нельзя. Если я всех сильнее -- то сильнее и самого себя. А этого быть не может"

Это абстрактное мышление. Он не только решил перепроверить, но и отвёкся от своего "я", чтобы суметь обобщить. Понятно, в кого пошёл :-)

 
 
 
 222
Сообщение13.02.2015, 22:10 
К какому выводу приходит уважаемая публика в результате обсуждения? Можно ли обучить математике любого нормального здравомыслящего человека? Или для этого нужен особый дар, подобный абсолютному музыкальному слуху? Наследуется ли абсолютный слух?

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 22:24 
Аватара пользователя
Ruslan_Sharipov в сообщении #977941 писал(а):
Можно ли обучить математике любого нормального здравомыслящего человека?

Школьной математике -- можно. Практически всякого. С мерой Лебега уже сложнее. Аксиоматические построения теории множеств (всякие аксиомы выбора и т.п.) -- сильно на любителя (я от них в депрессию впадаю)

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение13.02.2015, 22:28 
Ruslan_Sharipov в сообщении #977941 писал(а):
Можно ли обучить математике любого нормального здравомыслящего человека?

Приписывается Игорю Агафоновичу Борачинскому писал(а):
«Дифференцировать при должном терпении можно научить и зайца, а вот интегрированию зайца не научишь»
«Я могу научить дифференцировать любого. Дайте только розгу. Дайте розгу, и вот этот... нет, лучше - этот, будет дифференцировать. Дайте только розгу. И свяжите ему руки. А потом руки развяжут, и он будет дифференцировать.»

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение14.02.2015, 11:04 
Nemiroff в сообщении #977947 писал(а):
Приписывается Игорю Агафоновичу Борачинскому
Борачинский - это легенда МФТИ. Некоторые биографические факты из его жизни можно найти здесь: Четыре жизни Гоги Борачинского. В этом тексте ничего не говорится о его детях. Были ли у него дети и стали ли они математиками?

Другая легенда физтеха - это Дмитрий Владимирович Беклемишев, профессор. У него есть сын - Лев Дмитриевич Беклемишев, тоже математик, член-корреспондент РАН. Известна Людмила Анатольевна Беклемишева, доктор физико-метематических наук, один из трёх авторов физтеховского задачника "Сборник задач по аналитической геометрии и линейной алгебре". Предположительно она - жена Д. В. Беклемишева и мать Л. Д. Беклемишева. Об этом в Википедии не сказано. Зато сказано, что она - дочь Анатолия Ивановича Мальцева, известного алгебраиста, академика АН СССР.

Передаются ли математические способности от отца к сыну чисто биологически - об этом можно спорить. А вот более деликатный вопрос: Передаются ли математические способности от тестя к зятю?

Сам Анатолий Иванович Мальцев не был потомственным математиком, он родился в семье стеклодува Мишеронского стекольного завода. Предполагаю, что расцвет советской математики в 1920-30-ые годы определённым образом связан с некоторым вакуумом, который образовался в МГУ после двух революций 1917-го года. Этот вакуум заполнили талантливые выходцы из разных слоёв общества, которым не мешали в развитии сословно-семейные и другие корпоративно-клановые барьеры. Такие барьеры сформировались в СССР позже уже в следующих поколениях советских математиков. По наследству они перешли в новую российскую математику.

Вот что пишет А. Н. Ширяев, академик РАН, в книге воспоминаний об Андрее Николаевиче Колмогорове: "Не повезло (в кавычках) Андрею Николаевичу с экзаменами в Московский университет, куда он решил поступить в 1920 году - на физико-математический факультет: тогда всех желающих брали без экзаменов".

 
 
 
 Re: Вопрос о врожденной предрасположенности к математике
Сообщение15.02.2015, 01:20 
Ruslan_Sharipov в сообщении #978174 писал(а):
Передаются ли математические способности от отца к сыну чисто биологически - об этом можно спорить

Ну почему сразу к сыну... математика ведь не только мужское занятие. Признаки передаются не только по отцовской, но и по материнской линии, примерно по 50 процентов. И еще неизвестно какие 50 процентов из своих 100 родители передадут. И не известно что из сложившихся 100 процентов проявится у сына или дочери (а ведь проявится опять-таки около 50 процентов).
Как-то раз загуглил братьев Кличко, увидел фотку их родителей, и сразу стало ясно: чертами лица, конституцией тела, вот этой спортивной статью - они точно в маму. Почему-то уверен на все 100: своими спортивными успехами они обязаны наследственности по материнской линии. А ведь занятие очень даже мужское.

 
 
 [ Сообщений: 125 ]  На страницу Пред.  1, 2, 3, 4, 5, 6 ... 9  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group