2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Понимание сути математики
Сообщение16.08.2012, 23:23 
Заслуженный участник
Аватара пользователя


30/01/06
72407
bin в сообщении #606820 писал(а):
Не я первый - это они (Вирт и проч. (Хоар, нпр.)) напали

Они нападали не на goto, а на bowl of spaghetti.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение16.08.2012, 23:23 
Аватара пользователя


22/09/09

1907
Еще раз вернусь к ответу на:
Someone в сообщении #606131 писал(а):
а в книге Лакатоса, к счастью, никакой философии не заметно.
приведу цитату из введения:
Цитата:
В истории мысли часто случается, что при появлении нового мощного метода быстро выдвигается на авансцену изучение задач, которые этим методом могут быть решены, в то время как все остальное игнорируется, даже забывается, а изучением его пренебрегают. Именно это как будто произошло в нашем столетии в области философии математики в результате стремительного развития метаматематики.

Предмет метаматематики состоит в такой абстракции математики, когда математические теории заменяются формальными системами, доказательства — некоторыми последовательностями хорошо известных формул, определения — «сокращенными выражениями», которые «теоретически необязательны, но зато типографически удобны».
(замеченную философию пометил жирным шрифтом).

-- Чт авг 16, 2012 23:24:43 --

Munin в сообщении #606833 писал(а):
bin в сообщении #606820 писал(а):
Не я первый - это они (Вирт и проч. (Хоар, нпр.)) напали

Они нападали не на goto, а на bowl of spaghetti.
А это не одно и тоже? ;-)

-- Чт авг 16, 2012 23:36:28 --

Окончание книги Лакатоса:
Цитата:
Учитель. Сочувствую вам. Эта последняя стадия даст важные источники пищи для нашей дискуссии. Но научное исследование «начинается и кончается проблемами». (Покидает классную комнату).
Бета. Но вначале у меня не было проблем! А теперь у меня нет ничего, кроме проблем!
Не всякому первокурснику это понять. Т.о., если кто только на первом курсе эту книгу читал - стоит перечитать.

-- Чт авг 16, 2012 23:41:11 --

И еще про GOTO: см. статью "GOTO" в рувики:
Цитата:
Оператор GOTO в языках высокого уровня является объектом критики, поскольку чрезмерное его применение приводит к созданию нечитаемого «спагетти-кода». Впервые эта точка зрения была отражена в статье Эдсгера Дейкстры «Доводы против оператора GOTO», который заметил, что качество программного кода обратно пропорционально количеству операторов GOTO в нём. Статья приобрела широкую известность как среди теоретиков, так и среди практиков программирования, в результате чего взгляды на использование оператора GOTO были существенно пересмотрены. В своей следующей работе Дейкстра обосновал тот факт, что для кода без GOTO намного легче проверить формальную корректность.

Код с GOTO трудно форматировать, так как он может нарушать иерархичность выполнения (то есть парадигму структурного программирования), и потому отступы, призванные отображать структуру программы, не всегда могут быть выставлены правильно. GOTO также аннулирует многие возможности компилятора по оптимизации управляющих структур.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 00:34 
Заслуженный участник
Аватара пользователя


30/01/06
72407
bin в сообщении #606834 писал(а):
А это не одно и тоже?

В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 00:45 
Аватара пользователя


22/09/09

1907
Munin в сообщении #606847 писал(а):
bin в сообщении #606834 писал(а):
А это не одно и тоже?

В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.
Спасибо за ответ. А Вы посмотрели цитату из вики (она чуть ниже)? Адресуйте Ваши слова и ко всем авторам Википедии ;-)

(Оффтоп)

Со знаменитостями я не только здороваюсь, но и работы совместные делаю. Но и в том, чтобы сказать "здрасте", уважаемому мной человеку, не вижу ничего плохого, даже, если и не знаменитость. Если Вы видете, то объясните пожалуйста.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 09:27 
Админ форума
Аватара пользователя


19/03/10
8952
 ! 
Munin в сообщении #606847 писал(а):
В очередной раз понятно, какой вы "специалист"... Специалист по здорованию за руку со знаменитостями.
Munin, замечание за личный выпад.

 Профиль  
                  
 
 Re: Понимание сути математики
Сообщение17.08.2012, 10:20 
Заслуженный участник
Аватара пользователя


23/07/05
17975
Москва
    bin в сообщении #606852 писал(а):
    А Вы посмотрели цитату из вики (она чуть ниже)?
    Обсуждалось структурное программирование, а не оператор goto. Вы не хотите процитировать статью о структурном программировании из той же Википедии?

    Википедия писал(а):
    Структу́рное программи́рование — методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70-х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом.

    В соответствии с данной методологией

    1. Любая программа представляет собой структуру, построенную из трёх типов базовых конструкций:
      последовательное исполнение — однократное выполнение операций в том порядке, в котором они записаны в тексте программы;
      ветвление — однократное выполнение одной из двух или более операций, в зависимости от выполнения некоторого заданного условия;
      цикл — многократное исполнение одной и той же операции до тех пор, пока выполняется некоторое заданное условие (условие продолжения цикла).
    В программе базовые конструкции могут быть вложены друг в друга произвольным образом, но никаких других средств управления последовательностью выполнения операций не предусматривается.

    2. Повторяющиеся фрагменты программы (либо не повторяющиеся, но представляющие собой логически целостные вычислительные блоки) могут оформляться в виде т. н. подпрограмм (процедур или функций). В этом случае в тексте основной программы, вместо помещённого в подпрограмму фрагмента, вставляется инструкция вызова подпрограммы. При выполнении такой инструкции выполняется вызванная подпрограмма, после чего исполнение программы продолжается с инструкции, следующей за командой вызова подпрограммы.

    3. Разработка программы ведётся пошагово, методом «сверху вниз».


    bin в сообщении #606852 писал(а):
    Адресуйте Ваши слова и ко всем авторам Википедии
    Википедию мы, вообще говоря, не уважаем. Именно из-за авторов: писать здесь может кто угодно, и порой хорошую статью, написанную специалистом, сменяет бред безграмотного альтернативщика.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 19:54 
    Аватара пользователя


    22/09/09

    1907
    Someone в сообщении #606934 писал(а):
    Вы не хотите процитировать статью о структурном программировании из той же Википедии?
    Хочу: чуть ниже в этой статье:
    Цитата:
    Наиболее сильной критике со стороны разработчиков структурного подхода к программированию подвергся оператор GOTO (оператор безусловного перехода), имевшийся тогда почти во всех языках программирования.


    -- Пт авг 17, 2012 20:12:46 --

    При этом можно отметить, что в 1974 вышла известная статья Д. Кнута "Structured Programming with Goto Statements", однако структурное программирование (м.б. и не совсем строго) часто продолжают называть "Goto less programming". Т.к. принцип избегать Goto, где только возможно, остается важнейшим принципом структурного программирования. Нпр., в статье "Оценка языка программирования Паскаль" Н. Вирт настоятельно рекомендует использовать для обучения подмножество языка, не содержащего Goto.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 20:34 


    25/02/12
    6
    Не знаю, насколько это то, что ты ищешь, но мне в своё время было очень интересно прочесть главу "Почему исчисления логики и арифметики применимы к реальности?" из книги Поппера "Предположения и опровержения".

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 21:43 
    Заслуженный участник
    Аватара пользователя


    23/07/05
    17975
    Москва
    bin в сообщении #607116 писал(а):
    Someone в сообщении #606934 писал(а):
    Вы не хотите процитировать статью о структурном программировании из той же Википедии?
    Хочу: чуть ниже в этой статье:
    Цитата:
    Наиболее сильной критике со стороны разработчиков структурного подхода к программированию подвергся оператор GOTO (оператор безусловного перехода), имевшийся тогда почти во всех языках программирования.
    И что? Вы с кем разговариваете и кому возражаете? Мне, что ли? Перечитайте то место в моём сообщении, где я пишу о структурном программировании. Я разве говорил, что оператор goto следует использовать как можно чаще?
    И сравните то, что Вы писали о сути структурного программирования, с тем, что написано в Википедии. И поймите, что критика оператора goto вторична, она следует из цели структурного программирования, а не является его сутью.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 21:51 
    Заслуженный участник
    Аватара пользователя


    30/01/06
    72407

    (Оффтоп)

    Someone
    bin не в том возрасте, чтобы надеяться его переубедить...

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 22:27 
    Аватара пользователя


    22/09/09

    1907

    (Оффтоп)

    Someone в сообщении #607132 писал(а):
    критика оператора goto вторична, она следует из цели структурного программирования, а не является его сутью
    А я говорил, что сутью? Где? ;-)

    -- Пт авг 17, 2012 22:29:33 --

    Someone в сообщении #607132 писал(а):
    Вы с кем разговариваете и кому возражаете?
    Я разговариваю с сообществом :D

    -- Пт авг 17, 2012 22:32:04 --

    Someone в сообщении #607132 писал(а):
    И сравните то, что Вы писали о сути структурного программирования, с тем, что написано в Википедии.
    Не понял, а до того Вы написали:
    Someone в сообщении #606934 писал(а):
    Википедию мы, вообще говоря, не уважаем. Именно из-за авторов: писать здесь может кто угодно, и порой хорошую статью, написанную специалистом, сменяет бред безграмотного альтернативщика.
    Так уважаете или нет? ;-)


    -- Пт авг 17, 2012 22:38:43 --

    Откуда в вики такое утверждение?:
    Someone в сообщении #606934 писал(а):
    Разработка программы ведётся пошагово, методом «сверху вниз»
    Надо будет там (в вики) шаблон "нет АИ" поставить! Спасибо за сигнал. :-) А вот в учебнике Грогоно по Паскалю, целая глава, где и «сверху вниз» и "снизу вверх" расссмотрены - и результаты соответсвуют принципам структурного прогр. BTW на практике зачастую применяют смешанную технику: «сверху вниз» + "снизу вверх".

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 22:58 
    Заслуженный участник
    Аватара пользователя


    23/07/05
    17975
    Москва
    bin в сообщении #606580 писал(а):
    Такого вывода в книге нет: "с почётом похоронить...никогда ей не пользоваться... упечь в психушку".
    Попробовал бы он это явно написать. Но атмосфера книги именно такая. И про безумие математиков он говорит.

    bin в сообщении #606580 писал(а):
    Можно и снизу вверх.
    Нет, именно сверху вниз. Хотя, разумеется, программу, в том числе и хорошо структурированную, можно написать многими способами.
    bin в сообщении #606580 писал(а):
    Но проще и быстрее оказалось обходиться без этого оператора, поэтому технологию структурного программирования и называли "программированием без goto".
    На самом деле goto не исчезает, а прячется в управляющих структурах, если они на это способны. А если не способны, то придётся писать его явным образом, придерживаясь правил структурного программирования.

    bin в сообщении #606580 писал(а):
    Конечно же не все так просто. Поэтому в Виртовском Паскале был оставлен goto, был оставлен и в стандартах, хотя в расширениях типа turbo Pascal (Borland) были предложены и механизмы типа exit для избежания goto.
    exit - это тот же goto, только без явной метки, и его использование нарушает правило структурного программирования: каждый блок должен иметь один вход и один выход. А exit - это выход из середины блока. Аналогичную роль играют в некоторых языках операторы break и continue. Этих операторов можно избежать, используя соответствующим образом стандартные для структурного программирования структуры.

    bin в сообщении #606582 писал(а):
    При поверхностном взгляде многое можно попытаться назвать простым backtracking-ом, не задумываясь о том, что в данном алгоритме всегда происходит отсечение слишком многих ветвей дерева решений.
    Разумеется. Если бы не происходило, то теоремы, доказанные за всю историю математики, мы пересчитывали бы по пальцам. В то время как реально их, я думаю, миллионы. Вы хотите сказать, что у Лакатоса сформулированы правила отсечения? Да ни в коем случае. Эффективных правил не существует.

    -- Пт авг 17, 2012 23:58:30 --

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Формализация дает возможности «компьютерного» использования математического аппарата
    А здесь неубедительно! Чихать математикам на компы, особенно тем, кто компов не застал. Да и теперь многим "чистым" математикам компы нужны только как пишущая машинка (с TeX функциями) и чтобы в сетку залезть. ;-)
    А что ещё "чистый" математик может получить от компьютера? Доказывать интересные теоремы компьютеры не умеют. Но, по крайней мере, формализация теории делает возможным использование компьютеров для доказательства теорем. А без формализации об этом и думать нельзя. Правда, существуют программы, которые могут проверять доказательства. Но, чтобы воспользоваться этой программой, нужно записать доказательство на специальном языке, который ещё изучить надо...

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Адекватность реальному миру – математический аппарат, по крайней мере, на низовом уровне должен позволять описывать реальный мир.
    ИМХО это мечты :-( Современная физика с богатым мат. аппаратом и то реальный мир цельно описать не может. Поэтому тратит миллиарды евро на коллайдеры в несбыточной надежде открыть "частицу бога", которая всем физикам вернет веру в торжество науки :D (хотя бы на время, пока другие частицы не откроют, которые опять картину порушат).
    Господи, какой бред...

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Из-за высокого уровня разделения труда люди не видят целостной картины мира.
    Полностью согласен!
    Ну, целостную картину мира и ответы на все вопросы дают религия и "философия". Они совершенно точно знают, как должен быть устроен мир. А если теория относительности не соответствуют "философии", то это потому, что теория относительности - это буржуазная лженаука. (Мне не хочется употреблять термин "философия" без кавычек, так как есть настоящая философия, которая занимается своими вопросами и не лезет в чужую область.)

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Не понимая места приложения своей работы, люди начинают выдумывать всякие смыслы, которых нет. Далее «бесхозные» математики начинают выдумывать всякую формалистическую хрень, которая с большой вероятностью отправится в помойное ведро. Другие начинают это поносить, также не понимая применение тех или работ.
    Верно! Об этом и пишет Клайн (см. выше). ИМХО нельзя запретить "выдумывать всякую формалистическую хрень", но эти бы силы, да в мирных целях: хотя бы на 50% ;-)
    Вы оба вместе с Клайном и Лакатосом не понимаете, что такое формальная теория, и зачем она нужна.

    bin в сообщении #606820 писал(а):
    mserg в сообщении #606665 писал(а):
    Скорее всего, кризиз все же есть.
    Википедия утверждает, что кризис был (см. "Кризис математических основ", лучше уйти по интервики на англовики - там подробнее и куча источников). В рувики сказано:
    Цитата:
    Кризис все еще не пройден, но он затух.
    - ИМХО фраза типа "помиловать нельзя повесить", т.о. ИМХО кризис продолжается.
    Глупости это. Просто громкие слова для привлечения внимания. Математики здесь уже давно разобрались, а "философы", не понимая сути дела, продолжают сто лет жевать одну и ту же жвачку.

    bin в сообщении #607143 писал(а):
    А я говорил, что сутью? Где?
    Вот начало нашего диалога.
    bin в сообщении #606124 писал(а):
    в программинге свершилось три революции: структурная (без goto) ...
    Someone в сообщении #606262 писал(а):
    Смысл структурного программирования - вовсе не в запрете оператора goto.
    bin в сообщении #606493 писал(а):
    А в чем? Просветите, пожалуйста.
    А далее Вы всё время пытаетесь доказать, что я говорю ерунду, а главное - запретить goto.

    bin в сообщении #606580 писал(а):
    А если говорить серьезно, то Клайн говорит, что математикам нужно быть ближе к "народу" (т.е. к физикам, химикам, биологам и прочим), так как они были близки в прошлом. Очень здравая идея. Помню, нпр., цирк, когда в ведущий НИИ РАН по химии устраивали на с.н.с. математика. Нужно было утвердить это на ученом совете. Ему задают вопросы, а он: "химии не знал, не знаю и знать не хочу!"
    Особенности отдельных математиков не являются проблемами математики, так что это к делу не относится. Я, например, с удовольствием сотрудничал и с физиками, и с химиками, и с врачом. Никакой самоизоляции в математике нет. Я не знаю ни одной области математики, которая была бы изолирована от остальных. Все они так или иначе связаны применяемыми методами и взаимным использованием. Прикладная математика также не является изолированной от "чистой".

    bin в сообщении #606834 писал(а):
    Еще раз вернусь к ответу на:
    Someone в сообщении #606131 писал(а):
    а в книге Лакатоса, к счастью, никакой философии не заметно.
    приведу цитату из введения:
    Цитата:
    В истории мысли часто случается, что при появлении нового мощного метода быстро выдвигается на авансцену изучение задач, которые этим методом могут быть решены, в то время как все остальное игнорируется, даже забывается, а изучением его пренебрегают. Именно это как будто произошло в нашем столетии в области философии математики в результате стремительного развития метаматематики.

    Предмет метаматематики состоит в такой абстракции математики, когда математические теории заменяются формальными системами, доказательства — некоторыми последовательностями хорошо известных формул, определения — «сокращенными выражениями», которые «теоретически необязательны, но зато типографически удобны».
    (замеченную философию пометил жирным шрифтом).
    Да, на введение я внимания не обратил. А в нём Лакатос пишет ерунду. Он плохо себе представляет, что такое формальная теория, метатеория, зачем они нужны. Ему мерещится сррррашное и ужжжжасное чудовище - формализация. А Вы за ним и за Клайном эту ерунду повторяете.

    (Munin)

    Munin в сообщении #607135 писал(а):

    (Оффтоп)

    Someone
    bin не в том возрасте, чтобы надеяться его переубедить...
    Да, похоже, что безнадёжен. Но у меня тоже возраст не маленький, а меня убедить вполне можно.

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:03 


    22/01/11
    309
    Someone в сообщении #607151 писал(а):
    Прикладная математика также не является изолированной от "чистой".


    :D :D
    Это что-то из серии разделения математики на высшую и НЕ высшую :)

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:32 
    Заслуженный участник
    Аватара пользователя


    30/01/06
    72407

    (Оффтоп)

    Someone в сообщении #607151 писал(а):
    Но у меня тоже возраст не маленький

    Извините, вовсе не хотел за возраст задеть! :-) Скорее, я подразумевал что-то типа "чувствуются возрастные изменения". Скажем, и лысеют к 60 не все поголовно :-)

     Профиль  
                      
     
     Re: Понимание сути математики
    Сообщение17.08.2012, 23:48 
    Заслуженный участник


    09/08/09
    3438
    С.Петербург
    Несколько слов о структурном программировании и структурном подходе: в одной из первых изданных у нас книг на эту тему (Хьюз Дж., Мичтом Дж. Структурный подход к программированию) эти два понятия разделяются. Структурное программирование -- это программирование с помощью базовых структур (следование, развилка, цикл), а структурный подход -- это подход к программированию, в основе которого лежат нисходящая разработка, структурное программирование и сквозной структурный анализ.

     Профиль  
                      
    Показать сообщения за:  Поле сортировки  
    Начать новую тему Ответить на тему  [ Сообщений: 104 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.

    Модераторы: Модераторы Математики, Супермодераторы



    Кто сейчас на конференции

    Сейчас этот форум просматривают: YandexBot [bot]


    Вы не можете начинать темы
    Вы не можете отвечать на сообщения
    Вы не можете редактировать свои сообщения
    Вы не можете удалять свои сообщения
    Вы не можете добавлять вложения

    Найти:
    Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group