Цитата:
Достаточно обратиться к хорошо знакомым действительным числам: подавляющее большинство из них мы точно так же не можем построить, однако в их существовании не сомневаемся.
С какими числами мы имеем дело? Рациональные, иррациональные, трансцендентные и т.д. Корень из 2, число пи, и т.д. Но для всех этих чисел есть ОПРЕДЕЛЕНИЕ конечной длины (по описанию), благодаря которому мы МОЖЕМ найти любую цифру после запятой, у этого числа.
Вопрос - СУЩЕСТВУЮТ ли вещественные числа, которые мы НЕ МОЖЕМ описать никаким ОПРЕДЕЛЕНИЕМ конечной длины? Если они и существуют, то мы с ними никогда не можем столкнуться ни в каком анализе, а значит, остаётся только принять как аксиому. 1) "они существуют", либо 2) "они не существуют".
Эти вопросы математики так же скрыты, как существование параллельной Вселенной, о которой мы никогда ничего не сможем узнать.
Хотя я раньше считал что следует признать, что такие числа существуют, сейчас я вижу, что от принятия аксиомы "они не существуют" ничего по сути,
и не изменяется.
То же наверное, и с этим множеством..
Цитата:
Я сказал — построить невозможно.
Если его построить невозможно, иначе как
Цитата:
просто говорим "пусть
— такое множество, что
", и далее им пользуемся.
то меня такое построение не устраивает, я могу сказать, что такого множества и вовсе не существует.