2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 24, 25, 26, 27, 28, 29, 30 ... 41  След.
 
 Re: Бесконечность простых чисел-близнецов
Сообщение07.12.2012, 11:05 


31/12/10
1555
megamix62 в сообщении #655407 писал(а):
Цитата:
И еще. Число представлений четного числа суммой 2-х простых чисел ограничено,
тогда как число представлений четного числа разностью 2-х простых чисел не ограничено.


А как из разностью 2-х простых чисел равных $2$ :?:

Извините, но здесь какая-то опечатка.

 Профиль  
                  
 
 Re: Бесконечность триплетов (2,4) и (4,2)
Сообщение05.03.2013, 11:21 


31/12/10
1555
Бесконечность триплетов (2,4) и (4,2) в ряду простых чисел.

Т.к. серьезных замечаний по теме нет, и, более того, некоторые участники форума используют наработки данной темы
в своих работах, то продолжим решение аддитивных проблем простых чисел данным методом.
Одной из проблем, указанных А.Бухштабом в известном учебнике, является бесконечность числа триплетов
с разностями (2,4) и (4,2) в ряду простых чисел. Эта проблема аналогична проблеме близнецов.
Число триплетов (2,4) или (4,2) в ПСВ определяется функцией $\varphi_3(M)=\prod_5^p(p-3).$
Триплеты (2,4) и (4,2) существуют в ПСВ попарно как зеркальное отображение друг друга и мы будем рассматривать их
совместно как группу 6-го размера $(4,2,d,2,4)$ в ПСВ($1/2M,3/2M$) где $d$ - разность между 3-м и 4-м вычетами группы.

ПСВ(1/2M,3/2M) представляет собой ПСВ(-1/2M,+1/2M) с вычетами наименьшими по абсолютной величине,
увеличенными на модуль $M=p_t\#.$
Такое преобразование ПСВ необходимо для того, чтобы иметь дело с натуральными вычетами и их группами.
Возьмем общую разность между крайними вычетами группы равной $2p_t$
($p_t$ - из интервала простых чисел ПСВ($-1/2M,+1/2M$)
$p_{r+1}<p_t-6<p_t<p^2_{r+1}$
Получим приведенную группу вычетов $F(6)=(0,4,6,2p_t-6,2p_t-4,2p_t)$, которую можно
так же представить с минимальными по абсолютной величине вычетами

$F(6)=(-p_t,4-p_t,6-p_t,p_t-6,p_t-4,p_t)$

или как натуральную группу в ПСВ по модулю $M(1/2M,3/2M)$

$f(6)=(M-p_t,M+4-p_t,M+6-p_t,M+p_t-6,M+p_t-4,M+p_t)$

Особенности таких групп.
1) Числа $p_t$ должны быть из класса $6k-1.$
2) Числа $p_t$ могут быть только $10x\pm3$

Теорема. Число триплетов (2,4) и (4,2) в ряду простых чисел бесконечно.
Доказательство. Прежде всего надо доказать, что такие группы из двух триплетов существуют в ПСВ.
Рассмотрим приведенную группу $F(6)=(0,\;4,\;6,\;2p_t-6,\;2p_t-4,\;2p_t)$
Т.к. число вычетов в группе $n=6$ то нам надо проверить критерий существования групп
$K(p)=p-n+m(p)$ в ПСВ по модулям $p=3,\;p=5.$
Здесь $m(p)$ - число вычетов группы, сравнимых по модулю $p$, входящем в модуль М.
При $p>5,\;K(p)>0.$ -

Определяем модули сравнений вычетов группы $F(6).$,

$0,2p_t\;\;\;\;\;\;\;\;\;\;4,2p_t\;\;\;\;\;\;\;\;\;\;6,2p_t\;\;\;\;\;\;\;\;\;\;2p_t-6,2p_t\;\;\;\;\;\;\;\;\;\;2p_t-4,2p_t,$
$0,2p_t-4\;\;\;\;4,2p_t-4\;\;\;\;6,2p_t-4\;\;\;2p_t-6,2p_t-4,$
$0,2p_t-6\;\;\;\;4,2p_t-6\;\;\;\;6,2p_t-6$
$0,6\;\;\;\;\;\;\;\;\;\;\;\;\;4,6$
$0,4$

Сводная таблица модулей сравнения.
Числитель - модули, знаменатель - их число.,

$(p_t-2)/2,\;(p_t-3)/2,\;(p_t-5)/2,\;\;6/2,\;\;4/2,\;\;2/2,$

$p_t/1,\;(p_t-4)/1,\;(p_t-6)/1$

Непарные модули $p_t,\;p_t-4,\;p_t-6$ - вычеты ПСВ взаимно простые с модулем М, следовательно для них $K(p)=1.$

Модуль $p=3,\;K(3)-6+m(3).$
Мы имеем два модуля 6 и два модуля $p_t-2,$ (т.к. $p_t=6k-1$) сравнимых с $p=3,$ т.е. всего 4. Отсюда
$m(3)=4,\;K(3)=3-6+4=1>0$.
По модулю $p=3$ группа проходит в ПСВ.

Модуль $p=5,\;K(5)=5-6+m(5).$ Т.к. $p_t=10x\pm3$, то при $p_t=10x+3$ есть два модуля $p_t-3$ и
при $p_t=10x-3$ есть два модуля $p_t-2$, т.е. $m(5)=2,\;K(5)=5-6+2=1>0.$

Группа $F(6)$ существует в любой ПСВ.

Теперь надо доказать, что число таких групп в ПСВ нечетное.

Число групп $F(6)$ в ПСВ определяется формулой $A_6\varphi_6(M).$
Функция $\varphi_6(M)$ нечетная. Коэффициент $A_6=\prod K(p)/\varphi_6(p)$ для тех $p,$ когда $K(p)>\varphi_6(p).$
Критерий существования групп $K(p)=p-n+m(p)$ нечетный при четных $n,\;m(p).$
В нашем случае $n=6, m(p)$ - четная, т.к. модули сравнений вычетов группы $F(6)$ парные.
Таким образом, число групп $F(6)$ c триплетами нечетное при любом модуле.
Т.к. вычеты ПСВ расположены симметрично относительно центра ПСВ(1/2M,3/2M),
то одна из групп обязательно должна быть в центре этой ПСВ. Это группа:

$(M-p_r,M-(p_r-4),M-(p_r-6),M+(p_r-6),M+(p_r-4),M+p_r)$

или иначе, среди простых чисел ПСВ(-1/2M,+1/2M)

$(-p_r,\;4-p_r,\;6-p_r,\;p_r-6,\;p_r-4,\;p_r)$

В выборе модуля ПСВ мы не ограничены. Следовательно, число триплетов (2,4) и (4,2) среди простых чисел бесконечно.

 Профиль  
                  
 
 Re: Цепочки близнецов.
Сообщение21.05.2013, 09:26 


31/12/10
1555
Цепочки близнецов.

Среди простых чисел можно выделить числа-близнецы,
образующие арифметические прогрессии.
Например:

$5,7......11,13......17,19$ с разностью $d=6$

$5,7......17,19......29,31......41,43$ с разностью $d=12$

$11,13......41,43.......71,73......101,103$ с разностью $d=30$ и т.д.

Есть ли в этом какая-то закономерность ?

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение10.06.2013, 21:08 
Заблокирован


27/09/10

248
Россия г.Тюмент
vorvalm в сообщении #726525 писал(а):
Есть ли в этом какая-то закономерность ?

Разница между двумя любыми парами близнецов 6к это единственное математически допустимое значение. Вот, пожалуй, и вся закономерность

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 12:35 


31/12/10
1555
serega57 в сообщении #735128 писал(а):
Разница между двумя любыми парами близнецов 6к это единственное математически допустимое значение. Вот, пожалуй, и вся закономерность

Это очевидная закономерность. Я имел в виду число элементов цепочки из близнецов.

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 13:08 
Заблокирован


27/09/10

248
Россия г.Тюмент
vorvalm в сообщении #735343 писал(а):
Это очевидная закономерность. Я имел в виду число элементов цепочки из близнецов

Уверен количество пальчиков на одной руке больше чем количество элементов подумайте почему.

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 13:37 


31/12/10
1555
Интересно, почему ?

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 14:30 
Заблокирован


27/09/10

248
Россия г.Тюмент
vorvalm в сообщении #735371 писал(а):
Интересно, почему ?

Если к не кратно 5 то цепочка не больше 3х пар. Вот когда в 6к к кратна 5 то подумайте почему не больше 4.

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 15:44 


31/12/10
1555
Извините, но

$5,7,.....17,19,.....29,31,.....41,43$

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 16:02 
Заблокирован


27/09/10

248
Россия г.Тюмент
vorvalm в сообщении #735422 писал(а):
Извините, но

$5,7,.....17,19,.....29,31,.....41,43$

Пара 5,7 Вами была взята изначально поэтому к полученному ряду отношения не имеет Полученных пар только три. Я имел в виду это.

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 16:34 


31/12/10
1555
Чем же эта пара вам не угодила ?

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 16:46 
Заблокирован


27/09/10

248
Россия г.Тюмент
vorvalm в сообщении #735435 писал(а):
Чем же эта пара вам не угодила ?

Не только эта но и любая пара изначально взятая не является результатом получения. Но если Вам так более удобно то считайте что не получить более 4х и 5и.

 Профиль  
                  
 
 Re: Бесконечность простых чисел-близнецов
Сообщение11.06.2013, 17:00 


31/12/10
1555
Дело не в удобстве, но в принципе, по которому вы отсеиваете эти пары.

 Профиль  
                  
 
 Re: Цепочки близнецов.
Сообщение06.10.2013, 10:21 


31/12/10
1555
Ранее было показано (тема "Цепочки простых чисел"), что максимальное
число простых чисел, составляющих арифметические прогрессии с разностью
$K\cdot p_r\#$ не превышает $\varphi(p_{r+1})=p_{r+1}-1$
Смысл ограничения заключается в том, что члены такой прогрессии являются
вычетами ПСВ по модулю $p_{r+1}$ и следующий по очереди член будет
кратен числу $p_{r+1}.$
Переходя к цепочкам простых близнецов необходимо учитывать, что
очередные члены прогрессии не могут одновременно быть кратны числу $p_{r+1},$
т.е. отдельные цепочки каждого из близнецов не могут совпадать. При самом
лучшем раскладе эти цепочки могут не совпадать на одну ступень. В этом случае
цепочка из близнецов будет состоять из $p_{r+1}-2$ членов.

 Профиль  
                  
 
 Re: Цепочки близнецов.
Сообщение06.10.2013, 12:03 
Заслуженный участник


09/02/06
4397
Москва
vorvalm в сообщении #771309 писал(а):
Ранее было показано (тема "Цепочки простых чисел"), что максимальное
число простых чисел, составляющих арифметические прогрессии с разностью
$K\cdot p_r\#$ не превышает $\varphi(p_{r+1})=p_{r+1}-1$

$p_r=2$ - 3,5,7
$p_r=3$, - 5,11,17,23,29

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 608 ]  На страницу Пред.  1 ... 24, 25, 26, 27, 28, 29, 30 ... 41  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group