Что любопытно, так то, что эта задача до конца не исследована. Т.е. не исключена возможность нахождения нового многоугольника, который можно построить, и который не вписывается в ранее описанные серии.
Ещё Гаусс здесь всё до конца исследовал.
Но никто пока точно не знает, есть ли ещё простые числа Ферма, кроме уже известных.
А причём тут неизвестные простые числа Ферма? Критерий, позволяющий определить, можно ли данный правильный многоугольник построить циркулем и линейкой, доказан. Он включает все возможные "серии". Что изменится, если будет обнаружено ещё одно простое число Ферма? Критерий перестанет быть верным?