Sergeyev, Yaroslav D. Counting systems and the first Hilbert problem. Nonlinear Anal. 72 (2010), no. 3-4, 1701–1708,
Sergeyev, Yaroslav D. Numerical point of view on calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. 71 (2009), no. 12, e1688–e1707
Sergeyev, Yaroslav D. Numerical computations and mathematical modelling with infinite and infinitesimal numbers. J. Appl. Math. Comput. 29 (2009), no. 1-2, 177–195,
Sergeyev, Yaroslav D. A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica (Vilnius) 19 (2008), no. 4, 567–596,
Sergeyev, Yaroslav D. Mathematical foundations of the infinity computer. Ann. Univ. Mariae Curie-Skłodowska Sect. AI Inform. 4 (2006), 20–33.
Sergeyev, Yaroslav D. Arithmetic of infinity. Edizioni Orizzonti Meridionali, Cosenza, 2003. viii+104 pp. ISBN: 88-89064-01-3
Две на уровне самиздата, еще две в журнале Nonlinear Anal, который славится в последнее время тем, что по причине неквалифицированного рецензирования иногда публикует чушь, за которую потом краснеет. А стиль, да, научпоп с манией величия. Занимался бы своей оптимизацией.
Вот что пишут специалисты
The book starts with a rather standard description of infinity in mathematics. First, the author provides a detailed description of the peculiar properties of infinite sets—like Galileo's "paradox'' that, on one hand, there are exactly as many squares as natural numbers, but, on the other hand, not every natural number is a square, so there should be fewer squares than natural numbers. Then, the author describes the traditional Cantor arithmetic of cardinal and ordinal numbers. In Chapter 3, he describes his own approach to infinity, an approach that is free of "paradoxes'' like Galileo's (and thus, in better accordance with common sense). In this approach, the author starts with a fixed "infinite number''
that is divisible by all natural numbers, and then considers expressions containing
, such as
,
,
, etc., as different infinite numbers.
The author presents this as a completely new idea, but readers familiar with non-standard analysis will immediately recognize that the resulting set is a (kind of) non-standard extension of natural numbers, with
an infinitely large (non-standard) integer.
V. Ya. Kreinovich