2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 19  След.
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение20.03.2010, 19:03 
Заслуженный участник


13/12/05
4519
vek88 в сообщении #299858 писал(а):

Обращаю внимание на дурацкий вид наших генераторов, как я уже выше писал. Теперь можно объяснить - почему дурацкий. Всю свою жизнь я имел дело с линейными представлениями групп, например, матрицами (пример - матрицы Паули) или операторами в гильбертовых пространствах или пространствах Фока (кванты и квантовая теория поля).

А здеся? Один генератор - это вектор. И надо помнить, что его действие на аргумент - это сложение. А другой генератор - матрица, а применяется к аргументу посредством умножения. Но что выросло, то выросло.

Вот-вот :)
Матричное представление генераторов подходит только для линейных групп: в случае линейных групп векторные поля тоже оказываются линейными, и могут быть представлены как
$$X_1(\mathbf x)=X_1\mathbf x.$$
То есть, если брать определение генератора, как оно дано Вами в 3, то должно быть
$$X_1=X_1\cdot(x,y,z,t)=(t,0,0,0),\; X_2=X_2\cdot(x,y,z,t)=(0,t,0,0),\; X_3=X_3\cdot(x,y,z,t)=(0,0,t,0),$$
где $X_1,X_2,X_3$ - Ваши $4\times 4$ - матрицы.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение20.03.2010, 19:21 


15/10/09
1344
Padawan в сообщении #299893 писал(а):
Вот-вот :)
Матричное представление генераторов подходит только для линейных групп: в случае линейных групп векторные поля тоже оказываются линейными, и могут быть представлены как
$$X_1(\mathbf x)=X_1\mathbf x.$$
То есть, если брать определение генератора, как оно дано Вами в 3, то должно быть
$$X_1=X_1\cdot(x,y,z,t)=(t,0,0,0),\; X_2=X_2\cdot(x,y,z,t)=(0,t,0,0),\; X_3=X_3\cdot(x,y,z,t)=(0,0,t,0),$$
где $X_1,X_2,X_3$ - Ваши $4\times 4$ - матрицы.
Спасибо - проверю. Но вряд ли сегодня - честно говоря, устал.

Плюс - призываю не очень то волноваться. Ведь мы пишем эти дурацкие генераторы не для красоты, а для конкретных дел, по которым нам и воздастся. Ведь полученные коммутаторы группы Ли мы сверим с известными - и сразу все вскроется.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 11:39 


15/10/09
1344

(Оффтоп)

Сегодня наше радио начало свои передачи словами Вы еще спите, а vek88 уже работает.

Генераторы группы пространственных вращений. Рассмотрим поворот 3-пространства на угол $\varphi$ вокруг оси $z$. Соответствующая матрица нашей группы Галилея имеет вид $$ \Gamma = \left(\begin {array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
 \sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 
\end{array} \right).$$ Следуя нашему определению для нахождения соответствующего генератора $J_3$ дифференцируем эту матрицу по $\varphi$ в нуле. Аналогично поступаем для малых поворотов вокруг осей $x, y$. Искомые генераторы имеют вид. $$
J_1=\left(\begin {array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0  
\end{array} \right),
J_2=\left(\begin {array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0  
\end{array} \right),
J_3=\left(\begin {array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0  
\end{array} \right).
$$ А теперь мы созрели для рассмотрения азов алгебры Ли группы Галилея – это будет наш следующий раздел. А поскольку у нас возникли маленькие нестыковочки, мы схитрим: сначал рассмотрим подгруппу группы Галилея, образованную умножениями 4-ки координат на матрицу $\Gamma$. Эту группу мы обозначим $G_6$ (индекс по числу параметров). В результате мы исполнимся осознанием сути алгебры Ли.

Потом рассмотрим трансляционную подгруппу $T_4$ 4-сдвигов.

А уж потом, е-мое, будем корячиться над совместным рассмотрением $G_6$ и $T_4$.

(Оффтоп)

Жить захочешь - и не так раскорячишься, короче, взялся за Ли, не говори не смогли.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 18:49 


15/10/09
1344
4. Алгебры Ли группы $G_6$

Мы провели традиционную для анализа линеаризацию группы Галилея в окрестности единицы группы, т.е. построили некоторое касательное линейное пространство. Это касательное пространство является объединением касательных прямых в единице группы. Его размерность равна количеству параметров в группе.

Рассмотрим более подробно подгруппу $G_6$. С каждым генератором $J_\alpha, X_\alpha$ этой группы мы можем связать соответствующую ему однопараметрическую подгруппу группы $G_6$. Например, любой (а не только малый) поворот вокруг оси $z$ задается матрицей $$\Gamma(\varphi) = e^{\varphi J_3}.$$ Напомню, что экспонента от матрицы может быть представлена обычным рядом для экспоненты (см. Теорию матриц Ф.Р. Гантмахера). Более того, каждый элемент группы $G_6$ может быть представлен с помощью некоторой линейной комбинации ее генераторов.

Однако рассуждая в терминах касательного пространства мы утеряли информацию о некоммутативности группы, поскольку сложение векторов коммутативно. Для восстановления информации о некоммутативности, для двух произвольных элементов $g, h \in G$ построим элемент $$k= g h g^{-1} h^{-1},$$ назваемый их коммутатором. Если $$g=e^{\lambda X}, h=e^{\lambda Y},$$ то, пренебрегая малыми членами выше второго порядка, $$k = k(\lambda) = 1 + \lambda^2 (XY-YX) + \ldots$$ Выражение $$[X, Y] = XY - YX$$ называется коммутатором двух матриц $X$ и $Y$. Этот коммутатор является касательным вектором к кривой $k(\lambda)$. Легко видеть, что коммутаторы удовлетворяют известным соотношениям антикоммутативности, линейности и тождеству Якоби. Линейное пространство с бинарной операцией $[X, Y]$, удовлетворяющей этим свойствам, называется алгеброй Ли.

Упражнение. Поскольку понятие коммутатора является краеугольным камнем для групп и алгебр Ли, настоятельно рекомендую коллегам самостоятельно проверить формулу для $k(\lambda)$. Здесь есть подводные камни. Лично я этот факт хорошо запомнил на лекциях по допглавам квантовой механики в институте. Но пытаясь доказать это вчера самостоятельно, пришлось поуродоваться, поскольку детали совсем забыл.

Указание. Доказывая конкретные "аналитические" факты о группах всегда следует учитывать групповые свойства.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 20:35 
Заслуженный участник


13/12/05
4519

(Оффтоп)

Имеем
$$e^{\lambda X}e^{\lambda Y}=\left (1+\lambda X+\frac{\lambda^2 X^2}{2}+o(\lambda})\right)\cdot\left (1+\lambda Y+\frac{\lambda^2 Y^2}{2}+o(\lambda})\right)=1+\lambda (X+Y)+\lambda^2 \left (XY+\frac{X^2+Y^2}{2}\right)+o(\lambda^2)$$
Отсюда (или аналогично)
$$e^{-\lambda X}e^{-\lambda Y}=\left (1-\lambda X+\frac{\lambda^2 X^2}{2}+o(\lambda})\right)\cdot\left (1-\lambda Y+\frac{\lambda^2 Y^2}{2}+o(\lambda})\right)=1-\lambda (X+Y)+\lambda^2 \left (XY+\frac{X^2+Y^2}{2}\right)+o(\lambda^2)$$
Наконец
$$k(\lambda)=e^{\lambda X}e^{\lambda Y}e^{-\lambda X}e^{-\lambda Y}=1+\lambda (X+Y-X-Y)+\lambda^2\left(-(X+Y)^2+2XY+X^2+Y^2\right )+o(\lambda^2)=1+\lambda^2 (XY-YX)+o(\lambda^2)$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 21:22 


15/10/09
1344

(Оффтоп)

Я оказался существенно более ленивым - вот мой вывод.

$(1+ aX)(1+aY)(1-aX)(1-aY) \approx$

$\approx 1 + a(X+Y-X-Y) +a^2(XY-X^2-XY-YX-Y^2+XY) \approx$

$\approx 1+a^2(X^2-Y^2+[XY]) \approx$

$\approx 1+a^2[XY],$ учитывая групповые свойства

$ (1-a^2X^2) = (1+aX)(1-aX) \approx 1$ (аналогично для $Y^2$).

Именно так мы выводили на лекциях, но трюк про групповые свойства я, естественно, забыл и должен был изобретать заново.

Это сродни перенормировкам в квантовой электродинамике, когда мы сокращаем бесконечности. А здесь мы ошиблись, "забыв" выписать члены порядка $a^2$ при разложении экспоненты, а потом как бы "вспомнили" про это, т.е. снова ошиблись. В результате "сократили" две ошибки.

Резюмируя, Ваш метод точный и очевидный, но громоздкий.

Мой метод - вовсе не очевидный (и всегда в таких случаях грызет червь сомнения).

Кстати, программисты всегда предпочитают надежные и легко проверяемые варианты написания программ, даже невзирая на рост размера программы. А хитрости, никому кроме него не понятные, хороший программист предпочитает избегать. И правильно делает.

И еще - в таких серьезных вещах всегда лучше два (или больше) независимых метода вычислений, чем какой-то один. Это снижает риск ошибок. И мне было приятно увидеть, что мой, весьма сомнительный, метод все-таки дает тот же ответ, что и точный расчет, представленный Вами.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 22:35 


15/10/09
1344

(Оффтоп)

Забыл сказать следующее. Поскольку $Y$ не входит в выражение $$ (1-a^2X^2) = (1+aX)(1-aX),$$ мы "вспоминаем происхождение" членов $1+aX$ и $1-aX$, первого - от $e^{aX}$, второго - от $e^{-aX}$. Следовательно, на самом деле, произведение этих членов произошло от $$e^{aX}e^{-aX}=1.$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение21.03.2010, 23:17 
Заслуженный участник


13/12/05
4519

(Оффтоп)

В случае общей (не линейной) группы Ли преобразований, генераторы группы $X(\mathbf{x})$ уже не являются линейными полями, а значит, не могут быть представлены матрицами.

Тем не менее, для векторных полей также вводится понятие экспоненты. А именно, экспонентой $e^{\lambda X}$ векторного поля $X(\mathbf{x})$ называется семейство преобразований $\Gamma(\lambda)=\Gamma(\lambda,\mathbf{x})\colon S\to S$ пространства $S$, в котором действует рассматриваемая групппа, зависящее от действительного параметра $\lambda$ и определяемое как решение системы обыкновенных дифференциальных уравнений
$$
\dfrac {d}{d\lambda}\Gamma(\lambda,\mathbf{x})=X\BIG|_{\Gamma(\lambda,\mathbf{x})} ,\quad \Gamma(0,\mathbf{x})=\mathbf{x}
$$
Из этого определения получаем такие свойства экспоненты
1. $e^{0X}=1$ -- тождественное преобразование
2. $\frac{d}{d\lambda} e^{\lambda X}{\mathbf x}=X\BIG|_{e^{\lambda X}{\mathbf x}}$ -- это просто уравнение для $\Gamma$
3. $e^{(\lambda+\mu)X}=e^{\lambda X}e^{\mu X}$ -- это следует из свойства единственности решения задачи Коши
4. $e^{\lambda\cdot cX}=e^{\lambda c\cdot X}$
Семейство преобразований $e^{\lambda X}$ называется также потоком, порожденным векторным полем $X$. Поток является однопараметрической подгруппой, касающейся генератора $X$.

Проверим согласованность определений экспоненты для общих и линейных групп.
Пусть $X(\mathbf x)=X\mathbf x$ -- линейное векторное поле, где $X$ - матрица. Тогда поток $\Gamma(\lambda, \mathbf x)$, порожденный этим полем является решением уравнения
$$ \dfrac{d}{d\lambda} \Gamma(\lambda,\mathbf x) = X\Gamma(\lambda,\mathbf x) ,\quad \Gamma(0,\mathbf x)=\mathbf x$$
Но этому уравнению, удовлетворяет $\Gamma(\lambda,\mathbf x)=e^{\lambda X}\mathbf x$, в силу единственности решения -- это и есть искомый поток.


(Оффтоп)

Как я уже говорил, векторные поля удобно представлять как дифференциальные операторы вида $X=p\dfrac{\partial}{\partial x}+q\dfrac{\partial}{\partial y}+r\dfrac{\partial}{\partial z}+s\dfrac{\partial}{\partial t}$, где $p, q, r, s$ -- координаты векторного поля $X$. Это, конечно, не случайно. Если $F(\mathbf{x})$ - какая-либо функция, то из формулы Тейлора и дифференциального уравнения потока получаем, что
$$F(e^{\lambda X}\mathbf{x})=F(\mathbf x)+\lambda XF(\mathbf{x})+\dfrac{\lambda^2}{2!}X^2F(\mathbf x)+\ldots+\dfrac{\lambda^k}{k!}X^kF(\mathbf x)+\ldots$$
где $XF=p\dfrac{\partial}{\partial x}F+q\dfrac{\partial}{\partial y}F+r\dfrac{\partial}{\partial z}F+s\dfrac{\partial}{\partial t}F$ -- действие оператора $X$ на функцию $F$, а $X^2F=X(XF)$.

В частности, если в качестве $F$ взять сами координатные функции $F=(x,y,z,t)$, то мы получим
$$e^{\lambda X}\mathbf{x}=\mathbf x+\lambda X\mathbf{x}+\dfrac{\lambda^2}{2!}X^2\mathbf x+\ldots+\dfrac{\lambda^k}{k!}X^k\mathbf x+\ldots \eqno (\ast)$$
Здесь подразумевается, что дифференциальные операторы $X, X^2,\ldots , X^k,\ldots $ действуют на каждую координату отдельно.


(Оффтоп)

Посмотрим теперь, как вычислить коммутатор генераторов группы, заданных в виде векторного поля.
Если $g=e^{\lambda X}, h=e^{\lambda Y}$, то их коммутатор
$$ghg^{-1}h^{-1}\mathbf x=\mathbf x+\lambda^2 (XY-YX) \mathbf x+\ldots$$ -- это проверяется в силу $(\ast)$ точно также как и для матричных коммутаторов. Отсюда следует (и это проверяется непосредственно), что оператор $[X,Y]=XY-YX$ является дифференциальным оператором первого порядка, а значит, описывает некоторое векторное поле -- коммутатор векторных полей $X$ и $Y$.

Опять, проверим согласованность определений коммутатора для общих и линейных групп.
Пусть $X(\mathbf x)=X\mathbf x=X^\alpha_\beta x^\beta\frac{\partial}{\partial x^\alpha}$ и $Y(\mathbf x)=Y\mathbf x=Y^\gamma_\delta x^\delta\frac{\partial}{\partial x^\gamma}$ -- два линейных векторных поля. Тогда их коммутатор $$[X,Y]=XY-YX=X^\alpha_\beta x^\beta Y^\gamma_\alpha\frac{\partial}{\partial x^\gamma}-Y^\gamma_\delta x^\delta X^\alpha_\gamma\frac{\partial}{\partial x^\alpha}=X^\alpha_\beta x^\beta Y^\gamma_\alpha\frac{\partial}{\partial x^\gamma}-Y^\alpha_\beta x^\beta X^\gamma_\alpha\frac{\partial}{\partial x^\gamma}=(X^\alpha_\beta  Y^\gamma_\alpha-Y^\alpha_\beta  X^\gamma_\alpha)x^\beta\frac{\partial}{\partial x^\gamma}}$$
Таким образом, поле $[X,Y]$ тоже оказалось линейным и $[X,Y](\mathbf x)=[X,Y]\mathbf x$.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 08:11 


15/10/09
1344

(Оффтоп)

Таких подробностей я не знал - мое представление об этом всегда было достаточно грубым и смутным. Но, поскольку мы вляпались в вывод коммутаторов группы Галилея, я заподозрил, что моих познаний не достаточно. Раньше мне это не было нужно, поскольку имел дело только с линейными представлениями групп, а коммутаторы брал из литературы готовые.

Так что Вы очень верно определили слабое место в моих познаниях - я бы сам вряд ли в этом разобрался. И уже даже приготовил домашнюю заготовку - ограничиться в общем случае коммутатором $g h g^{-1}  h^{-1}$ и спустить на тормозах вопрос об отсутствии представляющих матриц.

А теперь все упростилось. Огромное спасибо за ликбез. Вы изложили суть вопроса коротко и ясно на доступном для меня (и для аудитории) уровне.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 12:14 


15/10/09
1344
Продолжим рассмотрение алгебр Ли. Пусть дана группа размерности $n$ с генераторами $X_i$. Как показано выше, если $$g=e^{\lambda X_i}, h=e^{\lambda X_j},$$ то, пренебрегая малыми членами выше второго порядка, $$k = k(\lambda)= g h g^{-1} h^{-1} = 1 + \lambda^2[X_i,X_j] + \ldots$$ С другой стороны, с учетом определения генераторов группы (см. раздел 3), элемент $k$ можно представить в виде $$k = k(\lambda)= 1 + a_1(\lambda) X_1 + \ldots +  a_n(\lambda) X_n + \ldots  $$ где $a_i(\lambda)$ - параметры группы.

Сравнивая два представления элемента $k$ заключаем, что все параметры $a_i$ должны быть порядка $\lambda^2$, а коммутатор любых двух генераторов группы является линейной комбинацией генераторов этой группы, т.е. $$[X_i,X_j] = C^k_{i j} X_k,$$ где $C^k_{i j}$ - структурные константы алгебры Ли. Напомним, что по повторяющимся индексам подразумевается суммирование.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 17:23 


15/10/09
1344
Предположим, что дана группа $G$ и ее представление $G’$ (см. раздел 2, Теорема Кэли). Как связаны алгебры Ли этих двух групп? Ясно, что из изоморфизма групп следует изоморфизм алгебр Ли. Отсюда следует, что для нахождения тех или иных представлений группы $G$ автоморфизмами какого-либо класса состояний достаточно найти представление ее алгебры Ли в этом классе состояний.

Последнее, в свою очередь означает, что достаточно в нужном нам классе состояний найти такие операторы, коммутаторы которых идентичны коммутаторам исходной группы $G$.

Теперь пора найти коммутаторы группы $G_6$. Легко проверяется (уважаемые коллеги, проверяйте меня), что $$[X_\alpha, X_\beta]=0,$$ т.е. генераторы переходов в движущуюся систему координат коммутируют. Коммутативность операторов означает, что соответствующие преобразования могут выполняться в любом порядке – конечный результат не зависит от порядка выполнения этих преобразований.

Данный факт объясняется тем, что в Галилеевой физике при переходе в движущуюся систему скорости складываются. Следовательно, если мы сначала перешли из системы 1 в систему 2, движущуюся со скоростью $V_\alpha$ относительно системы 1, а затем в систему 3, движущуюся со скоростью $V’_\alpha$относительно системы 2, то это эквивалентно тому, что мы сразу из системы 1 перешли в систему 3, движущуюся со скоростью $ V_\alpha + V’_\alpha$относительно системы 1. Т.е. конечный результат зависит от суммы скоростей, но не от порядка перехода. Разумеется, здесь мы имеем в виду преобразования, соответствующие генераторам $X_\alpha$ - генераторы $J_\alpha$ в этих преобразованиях не участвуют.

Коммутаторы группы пространственных вращений имеют вид $$[J_1, J_2] = -J_3,$$ $$[J_2, J_3] = -J_1,$$ $$[J_3, J_1] = -J_2.$$ смысл в следующем - коммутатор малых поворотов вокруг двух различных осей дает поворот вокруг третьей оси. Коммутаторы вращений и переходов в движущуюся вдоль оси $x$ систему координат имеют вид $$[J_1, X_1] = 0,$$ $$[J_2, X_1] = X_3,$$ $$[J_3, X_1] = X_2.$$ Смысл в том, что при поворотах $X_\alpha$ преобразуется как вектор. Уважаемые коллеги! Прошу в качестве помощи (и упражнения):

1. Дописать остальные коммутаторы группы $G_6$.

2. Переписать коммутаторы с участием $J_\alpha$ в компактном (ковариантном) виде, например, с использованием антисимметричного символа $$\varepsilon_{\alpha \beta \gamma}.$$

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 19:01 


15/10/09
1344
Уважаемые коллеги!

Настал момент уточнить наши планы. Помнится мне предлагали не парится над выводом коммутаторов и взять готовые коммутаторы алгебры Ли группы Галилея. Но тогда я уперся рогом по методическим соображения.

А теперь мы хлебнули достаточно лиха с Софусом Ли. И неплохо разобрались с основами алгебр Ли. К тому же уважаемый Padawan в сообщении #300649 прекрасно разобрался с "нелинейными" трудностями.

Короче, теперь мы корифеи и можем позволить себе не ковыряться в деталях - не царское это дело.

А коли так, теперь мы вправе взять готовые коммутаторы и начать углубление уже непосредственно в физику.

Итак, следующий раздел будет посвящен уже физике, конкретно, выбору подходящего множества состояний, на котором будет действовать представление алгебры Ли группы Галилея.

С уважением,
vek88

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 19:36 
Аватара пользователя


22/10/08
1286
УрррА!!!

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 21:41 


15/10/09
1344
5. Пространство состояний

Итак, мы поняли смысл генераторов алгебры Ли группы Галилея и даже самостоятельно вывели некоторые коммутаторы. Остальные коммутаторы, когда это будет нужно, возьмем готовые, например, из Википедии или из других источников. А сейчас определимся с выбором подходящего для представления классической механики пространства состояний $S.$

Начнем с простейшего случая – одной материальной точки. Как задать состояние одной материальной точки? Например, можно с помощью вектора пространственных координат $x_\alpha$ и вектора скорости $\dot x_\alpha$. Мы, однако, предпочтем использовать гамильтоновы переменные (см. Гантмахер Ф.Р. Лекции по аналитической механике), т.е. вектор пространственных координат $x_\alpha$ и импульс материальной точки $p_\alpha$. Разумеется, на данном этапе мы "не знаем" что такое импульс - пока это просто синтаксическое понятие, т.е. название "какой-то" переменной. Смысл раскроется позже.

Теперь уточним вид операторов, действующих на $S.$ С помощью этих операторов мы будем строить представление нашей алгебры Ли группы Пуанкаре. В качестве операторов мы примем функции от времени и состояния. Более точно, речь идет о дифференциальных операторах специального вида, определяемых этими функциями. Операторы реализуются посредством скобок Пуассона (детали см. в параграфе 15 упомянутой книги Ф.Р. Гантмахера, полезным будет и комментарий Padawan в сообщении #300649).

Скобки Пуассона в случае одной материальной точки определяются следующим образом. Пусть даны две функции $\varphi(t, x_\alpha, p_\alpha)$ и $\psi(t, x_\alpha, p_\alpha)$. $$[\varphi, \psi] =\frac{\partial \varphi}{\partial x_\alpha}\frac{\partial \psi}{\partial p_\alpha} -\frac{\partial \varphi}{\partial p_\alpha}\frac{\partial \psi}{\partial x_\alpha}.$$ Выражение $[\varphi, \psi]$ мы интерпретируем, как результат действия оператора $\varphi$ на функцию $\psi$.

 Профиль  
                  
 
 Re: Вывод классической механики из Галилеевой инвариантности
Сообщение22.03.2010, 23:28 


15/10/09
1344
Заметим, что для двух операторов $X, Y$ их скобки Пуассона задают коммутатор этих операторов. И все - давайте найдем искомые операторы. Сразу заметим, что в силу 3-ковариантности оператор пространственных сдвигов просто равен импульсу, т.е. $P_\alpha = p_\alpha$. Оператор пространственных сдвигов будем задавать функцией (=оператором) Гамильтона $P_4 = H$. В силу 3-ковариантности $$H = H(p^2),$$ т.е. гамильтониан не зависит от о пространственных координат, а зависит только от квадрата импульса. Поскольку $$[X_\alpha, H] = p_\alpha,$$ получаем уравнение $$\frac{\partial X_\alpha}{\partial x_\alpha}\frac{\partial H}{\partial p_\alpha}=p_\alpha. \eqno(\ast)$$ Поскольку $[X_\alpha, p_\beta]=0,$ находим, что $$\frac{\partial X_\alpha}{\partial x_\beta}=0.$$ Отсюда заключаем, что наиболее общий вид $$X_\alpha = m(p^2) p_\alpha.$$ Осталось решить уравнение $(\ast)$. Но у нас проблема - это уравнение не имеет решений. Как всегда напоминаю - доверяйте, но проверяйте.

До завтра отдыхаем. Какие есть идеи? Без оператора Казимира нам не обойтись?

С уважением,
vek88

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 278 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7 ... 19  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: artur_k


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group