2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 13  След.
 
 
Сообщение18.02.2009, 22:07 
Мат в сообщении #187502 писал(а):
Если я один буду все доказывать, то что же останется математикам? Математика скучна, если в ней нет загадок.
Вот и Ферма в свое время так же решил ...

 
 
 
 О разности квадратов
Сообщение19.02.2009, 08:54 
Уважаемый Мат,
внимательно прочтите мое доказательство. Там сказано, что число, кратное 2, не равно разности квадратов. Там также сказано, что эти выводы являются побочным продуктом
полученных мною формул и к доказательствам ВТФ отношения не имеют. Ваш пример
числа 4k+2 - это число, кратное 2.
С уважением KORIOLA

Добавлено спустя 16 минут 8 секунд:

Мой ответ "Керзонам" ("великим ученым")

AD-y и Brukvalub-y,
читайте Соломон "Притчи", гл. 26, стих 4.
На этом форуме я вам больше отвечать не буду.
Не наполняйте его ядом злобы и ненависти неудачников.
KORIOLA

 
 
 
 
Сообщение19.02.2009, 09:10 
KORIOLA в сообщении #187570 писал(а):
На этом форуме я вам больше отвечать не буду.
УРААААА!!!!!!!!!! Хоть на этом спасибо.

 
 
 
 
Сообщение19.02.2009, 09:17 
Аватара пользователя
KORIOLA в сообщении #187570 писал(а):
Там сказано, что число, кратное 2, не равно разности квадратов.
Очередной безграмотный бред дремучего невежи.
Вот контрпример: $4^2  - 2^2  = 12$ - разность квадратов может быть кратна двум.
Так что, господин недоучившийся инженеришка, не прикрывайтесь Соломонами, Моисеями, и прчими древними мудрецами, бросайте нести околесицу, а пойдите и доучитесь.
Советую начать с Арифметики Магницкого.

 
 
 
 Re: О разности квадратов
Сообщение19.02.2009, 09:30 
Аватара пользователя
KORIOLA писал(а):
Уважаемый Мат,
внимательно прочтите мое доказательство. Там сказано, что число, кратное 2, не равно разности квадратов. Там также сказано, что эти выводы являются побочным продуктом
полученных мною формул и к доказательствам ВТФ отношения не имеют. Ваш пример
числа 4k+2 - это число, кратное 2.
С уважением KORIOLA

$4^2=5^2-3^2$ - число кратное 2 есть разность квадратов.

 
 
 
 
Сообщение19.02.2009, 09:36 
Аватара пользователя
shwedka писал(а):
Мат в сообщении #187456 писал(а):
никакой полином степени $k$ не может иметь общих множителей с полиномом степени $n$, где $k$ и $n$ - взаимно простые, т

Когда докажете это, буду смотреть на остальное.

Если докажет, то в частности опровергнет теорему Безу.

 
 
 
 Re: О разности квадратов
Сообщение19.02.2009, 09:36 
Аватара пользователя
KORIOLA писал(а):
читайте Соломон "Притчи", гл. 26, стих 4.
На этом форуме я вам больше отвечать не буду.
Не наполняйте его ядом злобы и ненависти неудачников.
KORIOLA



Ну что, KORIOLA, научилась гадить стоя? Это не помогает в доказательстве.

 
 
 
 
Сообщение19.02.2009, 09:57 
Аватара пользователя
bot писал(а):
shwedka писал(а):
Мат в сообщении #187456 писал(а):
никакой полином степени $k$ не может иметь общих множителей с полиномом степени $n$, где $k$ и $n$ - взаимно простые, т

Когда докажете это, буду смотреть на остальное.

Если докажет, то в частности опровергнет теорему Безу.

Прошу прощения. Теорема Безу в данном случае:
Остаток от деления полинома $P_n(x)$ на $x+y$ есть $P_n(-y)$. В данном случае остаток не равен $0$. Поясните насчет противоречия.

 
 
 
 
Сообщение19.02.2009, 11:01 
Аватара пользователя
Возьмём произвольный полином $f(x)$, имеющий корень $\lambda$, Поскольку степени $f(x)$ и $x-\lambda$ взаимно просты, то они по-Вашему не могут иметь общих множителей.

 
 
 
 
Сообщение19.02.2009, 12:41 
Аватара пользователя
bot писал(а):
Возьмём произвольный полином $f(x)$, имеющий корень $\lambda$, Поскольку степени $f(x)$ и $x-\lambda$ взаимно просты, то они по-Вашему не могут иметь общих множителей.

Получается, что $f(x)$ и $x-\lambda$ не могут иметь общих множителей кроме $n$, если речь идет о полиноме $$\frac{x^n+y^n}{x+y}$$ и полиноме $x+y$.
Да и еще. Полиномы $$\frac{x^n+y^n}{x+y}$$ в целых (некомплексных) числах корней не имеют. Комплексные числа неинтересны.
В комплексных числах данный полином может иметь корни, но это уже выдумки, другая область математики и не имеет никакого отношения ни к натуральным числам ни к теореме Ферма.
Хотя надо признать интерес вашего замечания: возможно :!: в комплексных числах уравнение $x^n+y^n=z^n$ имеет решения. :lol:
Скажем какие-нибудь:
$(x_3+\sqrt[n]{\phi_1}i)^n+(y_3+\sqrt[n]{\phi_2}i)^n=(z_3+\sqrt[n]{\phi_3}i)^n$ :lol:

 
 
 
 
Сообщение19.02.2009, 17:28 
Аватара пользователя
Нашел ошибку.
Цитата:
Но т.к. $x_0^n+y_0^n=k_1k_2z$, то ни $k_1$ ни $k_2$ общих множителей с $z$ не имеют

Там не $x_0^n+y_0^n=k_1k_2z$, а $x_0^{n^2}+y_0^{n^2}=k_1k_2z$. А это принципиально. :!:
Таким образом, случай 3 остается недоказанным.

 
 
 
 
Сообщение19.02.2009, 22:47 
Аватара пользователя
Мат в сообщении #187762 писал(а):
Таким образом, случай 3 остается недоказанным.

Э-э. Уж не хотите ли вы сказать, что можно быть немножко беременным?

 
 
 
 
Сообщение19.02.2009, 22:58 
Аватара пользователя
Коровьев
Решили всласть поплясать на костях разбитого доказательства? :lol:
Вот таков он, поиск истины, тернист и долог. Ровных дорожек не бывает. Я с самого начала написал что это бред.
Не удивлен, что так оно и оказалось. Жалко, конечно. Но что поделаешь?

 
 
 
 
Сообщение19.02.2009, 23:28 
Аватара пользователя
Дык, его и не было. Был набор символов и буковок, причём абсолютно не связанных. Но за вами, видя каков тут уровень ферманьяков, потянулись уже абсолютно безграмотные ферманьяки, опускающие форум по самое нихачу.

 
 
 
 
Сообщение20.02.2009, 14:50 
Аватара пользователя
Кажется мне удалось понять путь доказательства п.3. Но в отличие от изложенного выше он бредовым не является, а поэтому и в рецензии не нуждается.
Коровьев, Brukvalub и bot
Если вам интересен ход моих рассуждений, то предлагаю вам понять уравнение:
$$x^3+y^3=\left(a^3+b^3\right)^3$$, которое является частным случаем уравнения $x^3+y^3=z^3$, которое решений не имеет, что было доказано еще Эйлером, а впоследствии изящно доказано мисс Софи Жермен, и обобщено для всех простых Софи Жермен.
Предложенное же уравнение в плане доказательства неразрешимости проще уравнения $x^3+y^3=z^3$. Доказать его неразрешимость проще.

Уважаемая shwedka
Мне известно, что вы интересуетесь гипотезой Римана, поэтому за ваш интерес позвольте сделать вам напоследок подарок, который быть может поможет вам лучше разобраться с гипотезой Римана и достичь результатов:
Теорема:
Всякое простое число может быть представлено как:
$$\frac{a^n+b^n}{k\cdot(a+b)}$$, где $k$ - некоторое число, обладающее следующими свойствами:
1. $$k=\prod\limits_{i=1}^m{k_i}$$
2. $k_i>n$,
3. $m<n$
Т.е. всякое простое число является множителем какого-то полинома $$\frac{a^n+b^n}{a+b}$$. Не существует ни одного простого числа, не обладающего данным свойством.

Добавлено спустя 16 минут 8 секунд:

Не существует никакой суммы кубов, которая делится нацело на числа $17$, $29$, $71$, и ее основание не содержит данных чисел.

 
 
 [ Сообщений: 182 ]  На страницу Пред.  1 ... 4, 5, 6, 7, 8, 9, 10 ... 13  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group