2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 58  След.
 
 Re: Обсуждение и разбор марафонских задач
Сообщение25.09.2014, 12:50 
Аватара пользователя


29/04/13
8843
Богородский
VAL в сообщении #911757 писал(а):
Даже обидно, что таинство пропало :-( :wink:

Да и бог с ним. Хватит ещё на наш век таинств. У меня в темах, например, они тоже есть :-)

VAL в сообщении #911757 писал(а):
Так, как насчет размещения формул в OEIS?

Можете посмотреть, я направил одну для остроугольных в A247588 ещё 3 дня назад. Пока молчат.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение27.09.2014, 11:52 
Заслуженный участник


27/06/08
4065
Волгоград
===========ММ193===============

ММ193 (6 баллов)

Игроки Вася, Федя и Коля сыграли несколько паркий в настольный теннис навылет. Сколько партий мог сыграть Коля, если Вася сыграл a партий, а Федя - b?

Примечания:
участники первой партии определяются жребием;
для определенности будем считать, что $b \le a$.

Решение

Приведу решения Ариадны, Олега Полубасова и Анатолия Казмерчука.
Вложение:
Комментарий к файлу: Решение Ариадны
193_Ариадна.pdf [642.16 Кб]
Скачиваний: 695
Вложение:
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_pr_193.docx [30.86 Кб]
Скачиваний: 756
Вложение:
Комментарий к файлу: Решение Олега Полубасова
MM193_Полубасов.pdf [335.84 Кб]
Скачиваний: 673


Обсуждение

Задача ММ193 привлекла меня тем, что оказалась сложнее, чем я ожидал, придумав условие.

Другой особенностью оказалось разнообразие ответов. Среди присланных девяти (плос мой собственный) совпадают всего 2. Притом что безоговорочно правильными являются восемь.
Вот несколько примеров из неопубликованных решений:
Yadryara писал(а):
Коля мог сыграть любое количество партий с шагом $2$
от $a-b+2\lfloor{\frac{2b+1-a}3}\rfloor$
до $3b-a+2\lfloor{\frac{a}{b+1}\rfloor$
включительно.

fiviol писал(а):
Коля мог сыграть $a+b-2y$ партий, где $y$ - любое целое число, лежащее в интервале:
$\max(0; a-b-1) \le y \le \frac{a+b+1}3$

ПСВ писал(а):
$c$ может принимать любые значения с шагом 2 от $2\lceil\frac{2b-a-1}3+a-b$ до $2b-a-|a-b-1|+1$

val-etc писал(а):
$c_{min}=\frac s3$, где $s$ равно $a+b$, округленному ближайшего кратного 3 одной четности с $a+b$.
$c_{max}=3b-a+2sign(a-b)$.
Допустимые значения c изменяются от $c_{min}$ до $c_{max}$ по числам одной четности с $a+b$.

Равносильность ответов (надеюсь, что она таки имеется) совсем не очевидна. И это при том, что я привел только наиболее короткие варианты :-)

Еще один момент - строгость обоснований того факта, что все промежуточные значения подходящей четности достижимы. Одни участники потратили на это достаточно много усилий, другие сочли это очевидным, а один пообещал обосновать этот момент, не обещание не выполнил :-)
Лично мне представляется, что это почти очевидно, но... на итоговое оценки этот момент, все же, повлиял.

Наличие дополнительного параметра $k$ в ответе Олега Полубасова, представляется мне излишеством. На мой взгляд, не только две игры, но и одна, это вполне себе "несколько".

Награды

В зависимости от степени строгости обоснования и наличия/отсутствия обобщений и неточностей за решения задачи ММ193 начислены следующие баллы: Виктор Филимоненков, Ариадна, Владимир Дорофеев, Олег Полубасов, Дмитрий Пашуткин и Анатолий Казмерчук - по 6 баллов; Антон Никонов и Сергей Половинкин - по 5 баллов; Константин Хадаев - 4 призовых балла.

Эстетическая оценка задачи - 4.9 балла

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение28.09.2014, 11:58 
Заслуженный участник


27/06/08
4065
Волгоград
Цитата:
Вложение:
Комментарий к файлу: Решение Ариадны
193_Ариадна.pdf [642.16 Кб]
Скачиваний: 14
Вложение:
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_pr_193.docx [30.86 Кб]
Скачиваний: 2
Вложение:
Комментарий к файлу: Решение Олега Полубасова
MM193_Полубасов.pdf [335.84 Кб]
Скачиваний: 3
Интересно, это ник так завораживает?

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 01:19 
Аватара пользователя


08/12/11
110
СПб

(Оффтоп)

VAL в сообщении #913088 писал(а):
Цитата:
Вложение:
Комментарий к файлу: Решение Ариадны
193_Ариадна.pdf [642.16 Кб]
Скачиваний: 14
Вложение:
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_pr_193.docx [30.86 Кб]
Скачиваний: 2
Вложение:
Комментарий к файлу: Решение Олега Полубасова
MM193_Полубасов.pdf [335.84 Кб]
Скачиваний: 3
Интересно, это ник так завораживает?

Ариадна - это та, которая обещала Тесею, но изменила ему с Дионисом? Тогда ничего удивительного, математики любят изменчивость.

А почему Антону Никонову не добавили обещанный ему миллиард? Он ведь, вроде бы, что-то там обосновал.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 04:21 
Аватара пользователя


29/04/13
8843
Богородский
Да нет, ничего не обосновывал. Так, голые формулы.

Считайте, что я как "ABBA" — от миллиарда отказался :-)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 04:56 
Аватара пользователя


08/12/11
110
СПб
Yadryara в сообщении #913479 писал(а):
Да нет, ничего не обосновывал. Так, голые формулы.
Считайте, что я как "ABBA" — от миллиарда отказался :-)
Понимаете, Антон, "отказался - не отказался" влияет только на суммарное число баллов, которое, вообще, ничего не значит, это всё майя. Если я правильно понял политику ведущего, то начисленные за решение задачи баллы - это всего лишь способ сообщить участникам: "Сюда не ходи, туда ходи". Пошёл в правильную сторону - надо поощрять.
С уважением, Олег Полубасов. СПб.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 08:21 
Заслуженный участник


27/06/08
4065
Волгоград
Yadryara в сообщении #911838 писал(а):
VAL в сообщении #911757 писал(а):
Так, как насчет размещения формул в OEIS?

Можете посмотреть, я направил одну для остроугольных в A247588 ещё 3 дня назад. Пока молчат.
Предлагаю:
1. Поправить формулу, заменив на такую
A247588(n) = Sum (j=1 .. n(1 - sqrt(2)/2), n - j - floor(sqrt(2jn - j^2)))
2. С учетом исправлений распространить на другие последовательности.

-- 29 сен 2014, 08:41 --

(Оффтоп)

Masik в сообщении #913468 писал(а):
VAL в сообщении #913088 писал(а):
Цитата:
Вложение:
Комментарий к файлу: Решение Ариадны
193_Ариадна.pdf [642.16 Кб]
Скачиваний: 14
Вложение:
Комментарий к файлу: Решение Анатолия Казмерчука
Kazmerchuk_pr_193.docx [30.86 Кб]
Скачиваний: 2
Вложение:
Комментарий к файлу: Решение Олега Полубасова
MM193_Полубасов.pdf [335.84 Кб]
Скачиваний: 3
Интересно, это ник так завораживает?

Ариадна - это та, которая обещала Тесею, но изменила ему с Дионисом? Тогда ничего удивительного, математики любят изменчивость.
То есть, дело таки в нике.
Цитата:
А почему Антону Никонову не добавили обещанный ему миллиард? Он ведь, вроде бы, что-то там обосновал.

По пунктам:
1. Миллиарда никто не обещал. Да и нет у меня миллиарда. Я ведь не олигарх.
2. Обоснований не было. Были формулы для остро(тупо, прямо)угольных треугольников. Правда, из них (особенно из последней) ясно откуда они (а следовательно и формула для ММ192) взялись. Но обоснований таки не было.
3(главное). Привожу выдержку из правил:
Цитата:
Решение каждой задачи оценивается из указанного в задаче количества баллов, начисляемых за полное, правильное и своевременное решение. Если решение не обладает всеми вышеперечисленными признаками (но прислано в срок), за него все равно можно получить часть призовых баллов. Авторы оригинальных, неизвестных ведущему, решений могут поощряться дополнительными баллами. Субъективизм в оценивании является неизбежным злом. Свои претензии вы можете присылать ведущему. Если он сочтет их обоснованными, оценка может быть пересмотрена.
Ключевые слова выделил. Прибавка к баллам возможно только в случае обоснованной претензии на неверную оценку решения, присланного в срок.
А после...
В истории Марафона есть немало примеров (на вскидку ММ9, ММ60...), когда после опубликования решения появлялись замечательные обобщения (ММ9) или уточнения (ММ60). Но в каждом из этих случаев начисленные баллы не менялись.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 12:50 
Аватара пользователя


29/04/13
8843
Богородский
VAL в сообщении #913498 писал(а):
Предлагаю:
1. Поправить формулу, заменив на такую
A247588(n) = Sum (j=1 .. n(1 - sqrt(2)/2), n - j - floor(sqrt(2jn - j^2)))

Я всё же настаиваю, что суммирование должно начинаться с $j=0$. А в остальном согласен. Уже добавил в дискуссию.

VAL в сообщении #913498 писал(а):
2. С учетом исправлений распространить на другие последовательности.

То есть не дожидаясь, пока эту одобрят? Хорошо, попробую.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение29.09.2014, 14:25 
Заслуженный участник


27/06/08
4065
Волгоград
Yadryara в сообщении #913551 писал(а):
VAL в сообщении #913498 писал(а):
Предлагаю:
1. Поправить формулу, заменив на такую
A247588(n) = Sum (j=1 .. n(1 - sqrt(2)/2), n - j - floor(sqrt(2jn - j^2)))

Я всё же настаиваю, что суммирование должно начинаться с $j=0$. А в остальном согласен. Уже добавил в дискуссию.
Да, конечно с 0. Я про остальное. А это просто моя извечная неаккуратность.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение03.10.2014, 13:15 
Заслуженный участник


27/06/08
4065
Волгоград
Как это у меня бывает, формулировка ММ197 получилась, мягко говоря, невнятной :facepalm:

Надеюсь, что уточненная формулировка устранит возможные кривотолки.

Цитата:
ММ197 (5 баллов)

Будем говорить, что n-угольник относится к классу k, если его можно разрезать на k треугольников одной прямой и нельзя разрезать одной прямой на большее число треугольников. Найти все возможные значения k для $n = 2014$.

Примечания:
1. Никаких других фигур при разрезании возникать не должно.
2. Если вышеописанный разрез осуществить нельзя, многоугольник относится к классу 0.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение03.10.2014, 22:31 


15/05/13
355
VAL в сообщении #914787 писал(а):
Как это у меня бывает, формулировка ММ197 получилась, мягко говоря, невнятным :facepalm:

Надеюсь, что уточненная формулировка устранит возможные кривотолки.

Цитата:
ММ197 (5 баллов)

Будем говорить, что n-угольник относится к классу k, если его можно разрезать на k треугольников одной прямой и нельзя разрезать одной прямой на большее число треугольников. Найти все возможные значения k для $n = 2014$.

Примечания:
1. Никаких других фигур при разрезании возникать не должно.
2. Если вышеописанный разрез осуществить нельзя, многоугольник относится к классу 0.


Мне первоначальная формулировка больше нравится. Что невнятного в том, что некоторые многоугольники принадлежат одновременно к нескольким классам, а некоторые - к никакому классу?
А с уточнениями, вообще-то, меняется задача, которую кто-то уже решил: теперь надо еще доказывать, что на большее количество треугольников приведенные примеры не могут быть разбиты.

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение03.10.2014, 23:02 
Заслуженный участник


27/06/08
4065
Волгоград
fiviol в сообщении #914932 писал(а):
Мне первоначальная формулировка больше нравится. Что невнятного в том, что некоторые многоугольники принадлежат одновременно к нескольким классам, а некоторые - к никакому классу?
Ну, в этом случае их, как минимум, не следует называть классами. Все же классы намекают на классификацию.
Цитата:
А с уточнениями, вообще-то, меняется задача, которую кто-то уже решил: теперь надо еще доказывать, что на большее количество треугольников приведенные примеры не могут быть разбиты.
Это настолько очевидно, что мне бы и в голову не пришло, что это надо доказывать.
(Но задача, конечно же, меняется. Хотя бы в силу того, что ответ очевидным образом меняется.)

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение04.10.2014, 14:00 
Заслуженный участник


27/06/08
4065
Волгоград
===========ММ194===============

ММ194 (6 баллов)

Из n натуральных чисел, идущих подряд, выбрали 6 и разбили их на две тройки. При этом оказалось, что площади треугольников, стороны которых равны числам из этих троек, равны. При каком наименьшем n возможна такая ситуация?

Решение

Приведу решения Антона Никонова, Сергея Половинкина (в отдельном письме чуть позже), а также (куда же без них?) Ариадны и Олега Полубасова.

(Решение Антона Никонова)

Yadryara писал(а):
Я тут подумал: а что, если решить задачу в лоб. То есть попросту разобрать все возможные случаи при $n<8$.

Поскольку их не так много, всего $C_6^2 \cdot C_4^3=15\cdot4=60$ вариантов.

Если $x$ — минимальная сторона, то стороны одного треугольника $x,x+a,x+b$, а другого $x+c,x+d,x+f$.

Из формулы Герона следует, что площади этих тр-ков равны в том и только том случае, если:

$(3x+c+d+f)(x+d+f-c)(x+c+f-d)(x+c+d-f) = (3x+a+b)(x+a+b)(x+b-a)(x+a-b)$

Преобразование этого уравнения даёт, не побоюсь этого слова, кубический четырёхчлен:

$$k3x^3 + k2x^2 + k1x + k0 = 0$$
, где

$k3=4(c+d+f-a-b)$

$k2=2(-4ab+a^2+b^2-c^2+4cd+4cf-d^2+4df-f^2)$

$k1=4(-a^2b+a^3-ab^2+b^3-c^3+c^2d+c^2f+cd^2+cf^2-d^3+d^2f+df^2-f^3)$

$k0=a^4 - 2a^2b^2 + b^4 - c^4 + 2c^2d^2 + 2c^2f^2 - d^4 + 2d^2f^2 - f^4$


Интерес представляют натуральные корни этого монстра. Не забывая про Кардано, посмотрим более пристально, есть ли они у него:

\begin{array}{rrrrrrrrrr}
 a & b & c & d & f & k3 & k2 & k1 & k0 & \text{Положительные корни}\\
\\
 1 & 2 &  3 & 4 & 5 &    36 & 270 &  684 &  585 & \text {Нет}\\
 1 & 2 &  3 & 4 & 6 &    40 & 304 &  728 &  464 & \text {Нет}\\
 1 & 2 &  3 & 5 & 6 &    44 & 358 &  988 &  905 & \text {Нет}\\
 1 & 2 &  4 & 5 & 6 &    48 & 432 & 1392 & 1584 & \text {Нет}\\
 1 & 3 &  2 & 4 & 5 &    28 & 210 &  468 &  295 & \text {Нет}\\
 1 & 3 &  2 & 4 & 6 &    32 & 236 &  448 &   64 & \text {Нет}\\
 1 & 3 &  2 & 5 & 6 &    36 & 282 &  652 &  415 & \text {Нет}\\
 1 & 3 &  4 & 5 & 6 &    44 & 434 & 1444 & 1639 & \text {Нет}\\
 1 & 4 &  2 & 3 & 5 &    20 & 174 &  420 &  225 & \text {Нет}\\
 1 & 4 &  2 & 3 & 6 &    24 & 192 &  328 & -160 &  0.393\\
 1 & 4 &  2 & 5 & 6 &    32 & 288 &  768 &  576 & \text {Нет}\\
 1 & 4 &  3 & 5 & 6 &    36 & 366 & 1156 & 1121 & \text {Нет}\\
 1 & 5 &  2 & 3 & 4 &    12 & 162 &  636 &  711 & \text {Нет}\\
 1 & 5 &  2 & 3 & 6 &    20 & 202 &  532 &  191 & \text {Нет}\\
 1 & 5 &  2 & 4 & 6 &    24 & 252 &  768 &  576 & \text {Нет}\\
 1 & 5 &  3 & 4 & 6 &    28 & 322 & 1100 & 1031 & \text {Нет}\\
 1 & 6 &  2 & 3 & 4 &     8 & 176 &  952 & 1360 & \text {Нет}\\
 1 & 6 &  2 & 3 & 5 &    12 & 198 &  940 & 1225 & \text {Нет}\\
 1 & 6 &  2 & 4 & 5 &    16 & 240 & 1104 & 1456 & \text {Нет}\\
 1 & 6 &  3 & 4 & 5 &    20 & 302 & 1372 & 1801 & \text {Нет}\\
 2 & 3 &  1 & 4 & 5 &    20 & 126 &  180 &   25 & \text {Нет}\\
 2 & 3 &  1 & 4 & 6 &    24 & 144 &  104 & -272 &   1.\text { Вырожд. } S = 0.\\
 2 & 3 &  1 & 5 & 6 &    28 & 182 &  260 &   25 & \text {Нет}\\
 2 & 3 &  4 & 5 & 6 &    40 & 416 & 1400 & 1600 & \text {Нет}\\
 2 & 4 &  1 & 3 & 5 &    12 &  90 &  132 &  -45 &   0.284\\
 2 & 4 &  1 & 3 & 6 &    16 & 100 &  -16 & -496 &   2.\text { Вырожд. }S = 0.\\
 2 & 4 &  1 & 5 & 6 &    24 & 180 &  336 &  144 & \text {Нет}\\
 2 & 4 &  3 & 5 & 6 &    32 & 340 & 1072 & 1040 & \text {Нет}\\
 2 & 5 &  1 & 3 & 4 &     4 &  78 &  348 &  441 & \text {Нет}\\
 2 & 5 &  1 & 3 & 6 &    12 & 102 &  140 & -199 &   0.847\\
 2 & 5 &  1 & 4 & 6 &    16 & 144 &  336 &  144 & \text {Нет}\\
 2 & 5 &  3 & 4 & 6 &    24 & 288 &  968 &  896 & \text {Нет}\\
\end{array}


\begin{array}{rrrrrrrrrr}
 a & b & c & d & f & k3 & k2 & k1 & k0 & \text{Положительные корни}\\
\\
 2 & 6 &  1 & 3 & 4 &     0 &  84 &  608 & 1024 & \text {Нет}\\
 2 & 6 &  1 & 3 & 5 &     4 &  98 &  548 &  835 & \text {Нет}\\
 2 & 6 &  1 & 4 & 5 &     8 & 132 &  672 & 1024 & \text {Нет}\\
 2 & 6 &  3 & 4 & 5 &    16 & 260 & 1184 & 1600 & \text {Нет}\\
 3 & 4 &  1 & 2 & 5 &     4 &  30 &  -84 & -335 &   3.805\\
 3 & 4 &  1 & 2 & 6 &     8 &  32 & -296 & -896 &   5.772\\
 3 & 4 &  1 & 5 & 6 &    20 & 158 &  268 &   49 & \text {Нет}\\
 3 & 4 &  2 & 5 & 6 &    24 & 240 &  616 &  400 & \text {Нет}\\
 3 & 5 &  1 & 2 & 4 &    -4 &  18 &  132 &  151 &   8.759\\
 3 & 5 &  1 & 2 & 6 &     4 &  26 & -196 & -689 &   6.116\\
 3 & 5 &  1 & 4 & 6 &    12 & 114 &  212 &  -41 &   0.176\\
 3 & 5 &  2 & 4 & 6 &    16 & 188 &  512 &  256 & \text {Нет}\\
 3 & 6 &  1 & 2 & 4 &    -8 &  16 &  328 &  624 &   8.179\\
 3 & 6 &  1 & 2 & 5 &    -4 &  22 &  212 &  345 &  11.020\\
 3 & 6 &  1 & 4 & 5 &     4 &  94 &  484 &  729 & \text {Нет}\\
 3 & 6 &  2 & 4 & 5 &     8 & 160 &  728 &  960 & \text {Нет}\\
 4 & 5 &  1 & 2 & 3 &   -12 & -18 &   84 &   81 &   2.460\\
 4 & 5 &  1 & 2 & 6 &     0 &   0 & -288 & -864 & \text {Нет}\\
 4 & 5 &  1 & 3 & 6 &     4 &  46 &  -76 & -559 &   3.718\\
 4 & 5 &  2 & 3 & 6 &     8 & 112 &  184 & -304 &   1.\text { Вырожд. } S = 0.\\
 4 & 6 &  1 & 2 & 3 &   -16 & -28 &  208 &  400 &   3.663\\
 4 & 6 &  1 & 2 & 5 &    -8 & -12 &   48 &   16 &   2.\text { Вырожд. }S = 0.\\
 4 & 6 &  1 & 3 & 5 &    -4 &  26 &  196 &  211 &  11.265\\
 4 & 6 &  2 & 3 & 5 &     0 &  84 &  400 &  400 & \text {Нет}\\
 5 & 6 &  1 & 2 & 3 &   -20 & -58 &   92 &  121 &   1.740\\
 5 & 6 &  1 & 2 & 4 &   -16 & -48 &   48 &  16 &   1.\text { Вырожд. } S = 0.\\
 5 & 6 &  1 & 3 & 4 &   -12 & -18 &  140 &  121 &   3.175\\
 5 & 6 &  2 & 3 & 4 &    -8 &  32 &  296 &  256 &   8.685\\
\end{array}

Нетрудно видеть, что в подавляющем большинстве случаев все кэфы четырёхчлена положительны, и, стало быть, никаких положительных корней у него быть не может.
Если же и встречается единственный положительный корень, то он почти всегда нецелый.
А если всё-таки целый, то треугольники получаются вырожденными, с нулевой площадью.

А вот и примеры решений:

\begin{array}{rrrrrrrrrr}
 a & b & c & d & f & k3 & k2 & k1 & k0 & \text{Положительные корни}\\
\\
 5 & 7 &  1 & 2 & 3 &  -24 & -72 & 240 & 576 & 3\\
 9 & 10 &  1 & 6 & 8 &   -16 & -64 & 304 & -224 & 1.\text { Вырожд. } S = 0; \quad 2 \\
 9 & 10 &  2 & 3 & 4 &   -40 & -208 & 328 & 496 & 2\\
\end{array}

Взяв значения из 1-й строки и вспомнив, что корень — это минимальная сторона, получаю и другие стороны этого же тр-ка: $3+5=8;3+7=10$
И стороны другого тр-ка: $3+1=4;3+2=5;3+3=6$

То есть, это то самое первое решение $3;8;10$ и $4;5;6$. Откуда $n = 8$, поскольку используются некоторые из $8$ чисел в диапазоне $3...10$.

Два других решения для $n = 11$:

$2;11;12$ и $3;8;10$

$2;11;12$ и $4;5;6$

Были найдены и другие решения, но не вижу необходимости их здесь приводить. Возможно, удалось бы найти интересные обобщения, но со свободным временем у меня не очень.

Обсуждение

В идейном плане все присланные решения близки: формула Герона и дале конечный перебор до нахождения подходящего n.
Однако оптимизация этого перебора в разных решениях существенно различна.
Покажу, maple-код перебора (для $n=8$), который осуществлял я:
Код:
with(combinat):s:=(a,b,c)->expand((a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c)):
C:=choose(6,2):

for c in C do S:=[n]:for i to 6 do if not member(i,c) then S:=[op(S),n+i] fi od:
S:=[op(S),n+7]:Sp:=setpartition(S,3):
for p in Sp do
ss:=[solve(s(op(p[1]))-s(op(p[2])))]:
for q in ss do r:=subs(n=q,s(op(p[1]))):
if type(q,posint) and r>0 then print(subs(n=q,p),sqrt(r)/4) fi od od od:

                                                   1/2
               [[31, 36, 37], [32, 34, 38]], 24 455


                                                1/2
                                            15 7
                   [[3, 8, 10], [4, 5, 6]], -------
                                               4   

Из решения легко понять, что для каждого n существует не более конечно числа равновеликих целочисленных треугольников, стороны которых выбираются из n натуральных чисел идущих подряд.


Награды

После некоторых размышлений решил никого не выделять. Константин Хадаев, Виктор Филимоненков, Ариадна, Олег Полубасов, Дмитрий Пашуткин, Анатолий Казмерчук, Антон Никонов и Сергей Половинкин - получают по 6 призовых баллов.

Эстетическая оценка задачи - 4.8 балла


Вложения:
Комментарий к файлу: Решение Олега Полубасова
MM194_Полубасов.pdf [326.19 Кб]
Скачиваний: 698
Комментарий к файлу: Решение Ариадны
194_Ариадна.pdf [544.62 Кб]
Скачиваний: 720
 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение08.10.2014, 11:45 
Заслуженный участник


27/06/08
4065
Волгоград
Привожу решение Сергея Половинкина
Вложение:
Комментарий к файлу: Собственно решение
mm194__Polovinkin.pdf [94.57 Кб]
Скачиваний: 686

Вложение:
Комментарий к файлу: Приложение 1
r_7.xls [59.5 Кб]
Скачиваний: 675

Вложение:
Комментарий к файлу: Приложение 2
r_8.xls [82 Кб]
Скачиваний: 664

 Профиль  
                  
 
 Re: Обсуждение и разбор марафонских задач
Сообщение09.10.2014, 01:51 
Аватара пользователя


08/12/11
110
СПб
VAL в сообщении #914787 писал(а):
Как это у меня бывает, формулировка ММ197 получилась, мягко говоря, невнятным :facepalm:
А Вы в каком школе учили русского языка?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 861 ]  На страницу Пред.  1 ... 22, 23, 24, 25, 26, 27, 28 ... 58  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group