Собрал мысли про непонятности изучения традиционной математики от оснований. У
Neznajka_ в
теме были похожие трудности, действительно ли получилось их устранить? У меня получилось только вернувшись к старым основаниям до середины 19-го века и доработав детали. Размещаю историю трудностей:
"Решил я изучить традиционную математику(от арифметики до классического матанализа) от оснований очень подробно, так, чтобы был понятен всякий нюанс. И на этом пути я столкнулся с рядом сложностей.
Первая крупная сложность в том, что в основаниях традиционной математики зачем-то лежит теория множеств, которой ещё не было, когда была создана почти вся традиционная математика. Основания теории множеств у меня сразу не пошли, поэтому я решил найти источники, где математика строится не из теории множеств. В этих источниках в основе математики обычно лежат натуральные числа.
Но здесь меня ждала другая сложность. Оказалось непонятно, что такое иррациональные числа. Они появляются уже в арифметике при введении операции извлечения корня. Но строгое определение для них даётся с использованием понятия предел, которое вводится значительно позднее в курсе матанализа. Получилось, что математику нельзя изучать последовательно от оснований, так, чтобы было всё понятно и это норма.
Но мне такая норма не понравилась. Здание не может строиться с крыши, она упадёт. И я начал искать другие источники, где иррациональные числа вводятся понятно уже в арифметике. И нашёл ряд источников с другим подходом. Там в основе всей математики также лежат натуральные числа. Затем делается обобщение и вводятся рациональные числа, как отношение двух целых чисел, а далее вводятся иррациональные числа как бесконечные непериодические десятичные дроби.
Но в этом подходе непонятно, что такое десятичные дроби. В самом деле, мы знаем натуральные числа, из них получаем обыкновенные дроби, обобщая операцию деления, обратную умножению, чтобы она всегда выполнялась. А откуда же взялись десятичные дроби? В общем случае, перевод обыкновенной дроби в десятичную это разложение в ряд. А ряд это бесконечная сумма. То есть, это снова матанализ, который и занимается бесконечностями. Об этом авторы не упоминают, а вводят представление числа в виде десятичной дроби, как очевидное. Но этим самым они нарушают заявленную концепцию, что в основе математики лежат натуральные числа и только они.
Сам я тоже не смог ничего придумать, что спасло бы положение, чтобы арифметика последовательно строилась из простейших оснований без заимствований из матанализа. И, в результате, пришёл к выводу, что одних натуральных чисел в основаниях недостаточно для последовательного построения арифметики. И что нужно строить арифметику и далее всю традиционную математику от интуитивного понятия измерения, например, измерения расстояния. Мы берём из реального мира интуитивные понятия и переносим их в идеальный математический мир, упрощая различные аспекты, как это делается в геометрии.
Отмечу интересный аспект. Эта попытка вывести математику из минимального количества первичных понятий была сделана Кантором, Вейерштрассом, Дедекиндом и другими авторами и назвали они её арифметизацией математического анализа, имея ввиду, что арифметика якобы выводится из натуральных чисел, а после их работ и в основе матанализа также оказались только натуральные числа. Но вот их предшественник Коши пишет в книге “алгебраический анализ”:
“Выражение число мы будем употреблять в том смысле, в каком оно принимается в арифметике, где мы производим его от абсолютного измерения величин.” (С) Коши.
То есть, по свидетельству Коши на самом деле не было принято выводить арифметику из натуральных чисел. Получается, что под фундамент здания матанализа, который и создал Коши, были подложены другие основания.
Основания математики это философия и критерии истинности здесь другие. Один из возможных критериев правильности оснований это практическая продуктивность того, что из них получается. И о верности подхода Коши и других авторов свидетельствует продуктивность созданной ими науки. А вот верность новых оснований сомнительна, они были подложены под готовый фундамент математики, но можно ли было её создать из этих оснований, вот вопрос? На который я, изучив тему, отвечаю отрицательно.
Лично мне трудно двигаться вперёд в постижении науки, если непонятно, что откуда взялось. Теряется интерес. Поэтому, предлагаю нам таким “непонимающим” объединиться и написать подробные понятные основания из которых красиво выводится традиционная математика. При Коши похоже этого сделано не было, все основания это одно предложение, цитату которого я привёл. Я здесь выше в теме описал примерный план, он включает создание компьютерной программы. В одиночку, да с семейными заботами, мне его не потянуть."