это средняя энергия перехдящпя в потенциальноую при движении из прозводного места нижнерго слоя до границы слоев, и еще столько же переходит в потенциальную, для размещения в произвольном месте верхнего слоя
Погодите, у нас ведь при подсчете фактически "сортировка" молекул на те, которые попали в слой (которые долетели до границы), и те, которые не долетели. У тех, которые попали в слой,
Т.е. у них энергия больше этого значения (а не равна), и остальная необходимая часть энергии из общей кинетической энергии расходуется для распределения, по высоте верхнего слоя, о котором вы говорили. Так чего они тогда должны накапливаться на границе? У нас интеграл, выражающий поток частиц вверх, через границу слоёв, сводится к-
, и фактически определяет число частиц проходящих через границу(или число ударов о виртуальную стенку, которая расположена на границе, если угодно), а не центр слоя. Под границей - распределение
, над границей -
. Тогда почему мы интегрирование проводим от
, а не от
Из-за малости dU в выражении $(E_u) можно нижний предел взять 0. Затем подставите выражение барометрической формулы и в сумме получите 0 с точноностью до слагаемых второго порядка малости по dU
Как можно пренебрегать бесконечно малой величиной того же порядка в пределах интегрирования, когда мы имеем с ней же дело в подынтегральном выражении?? Создается впечатление, что вы любыми путями пытаетесь подбить результат под изотермическую парадигму.
a5-25...Еще раз говорю на 2 делить dU в ваших выражениях (среднее по слою значение потенциальной энергии), и концентрацию исправить.
Концентрацию для
я не досмотрел при наборе, спасибо. Естественно
. Почему делить на два - дошло, ура..., до границы между слоями, в которой мы определяем поток -
P.S. За Ваше терпение отдельное спасибо. Возможно мне придется углубиться в статистику, и я осознаю свою неправоту или...наоборот